

 Copyright © IBM Corporation, 2000

Hyper/J™ User and
Installation Manual

http://www.research.ibm.com/hyperspace

Peri Tarr
Harold Ossher

IBM Research

 Copyright © IBM Corporation, 2000

Introduction
What is Hyper/J™?

Hyper/J™ supports advanced, “multi-dimensional" separation and integration of concerns
in standard Java™ software. This facilitates adaptation, composition, integration, improved
modularization, and even non-invasive remodularization of Java software components.

Separation of concerns is simply an approach to decomposing software into modules,
each of which deals with, and encapsulates, a particular area of interest, called a concern.
Examples of concerns are functions, data types or classes, features (e.g., "persistence,"
"print," or "concurrency control"), variants, and roles. Object-oriented languages permit
decomposition by class, but only by class. Unlike classes, other kinds of concerns cannot
be encapsulated in single modules; instead, their implementations end up scattered
across the class hierarchy. With Hyper/J, developers can decompose a program
according to these other concerns, in addition to classes. They can create new separate
modules, in standard Java, that encapsulate these concerns from scratch, without
modifying the rest of the program or interfering with the work of other developers, or they
can extract such modules from existing Java programs. They can then integrate some or
all of these modules to yield programs executable on standard Java virtual machines
(JVMs). They can even create multiple system decompositions simultaneously, such as
by object, by feature, and by product line, and they can add new decompositions at any
stage of the software development lifecycle. Hyper/J helps manage the interactions across
different decompositions.

Hyper/J provides a powerful composition capability, which can be used to combine
separated concerns selectively into an integrated program or component. For instance, it
can be used to create a version of a software system that contains some features, but not
others, even if the original system was not written with the features separated. It can be
used to extend or adapt a component, even if that component was not written with suitable
“hooks,” design patterns [gam94], or open points. For example, suppose a developer
needs to produce an XML representation of a complex domain model that spans a large
system. Rather than modifying the classes involved in the domain model to add XML
streaming methods, (s)he can code these methods in a separate package (or packages),
and integrate them with the domain model classes using Hyper/J.

Hyper/J can be used at any stage of the software lifecycle—design, implementation,
integration, system evolution and reengineering. When used during the design or
implementation of system components, Hyper/J permits developers to architect the
system or components to separate all concerns of importance from the start. For
example, a developer could separate both class and feature concerns, while still using
standard Java(TM). When used during system integration, Hyper/J's composition
mechanism can be used to integrate separately developed software, including reusable
components, and to customize and adapt the software as needed for use in the particular

Chapter

1

Copyright © IBM Corporation, 2000 2

context. When used during system evolution, Hyper/J's separation of concerns
mechanism allows developers to focus on just those pieces of the system that are relevant
to the evolutionary path, and its composition and adaptation mechanisms make many
forms of evolution possible without changes to existing code. When used during
reengineering, Hyper/J's ability to introduce new decompositions without code changes is
especially valuable.

Organization of Document

This document describes the installation and use of Hyper/J. Chapter 2 explains how to
obtain and install Hyper/J, and how to troubleshoot some common problems that may
arise during installation. Chapter 3 introduces software engineering using multi-
dimensional separation of concerns and discusses the concepts that underlie Hyper/J.
Chapter 4 discusses the use of the Hyper/J tool, describing its command-line syntax, the
formats of its inputs and outputs, and the causes of some common error messages. It
also explains the current limitations of the tool. Finally, Chapter 5 presents an example
software development and evolution scenario and demonstrates how Hyper/J can be
used to address common problems in software development and evolution.

In Case of Problems... hyperj-support@watson.ibm.com

While our goal is to make Hyper/J and its accompanying documentation as easy to use
and error-free as possible, no software or documentation is completely free of problems. If
you run into problems, please send mail to hyperj-support@watson.ibm.com that
describes the problem you are having. Although we cannot guarantee that we will be able
to fix your problem, we will endeavor to help you as much as we can.

We Want to Hear From You

We are always striving to improve Hyper/J to enable it to address real-world software
engineering needs as effectively as possible. We welcome your constructive comments
on any aspect of Hyper/J and its documentation. We would also like to hear about any
uses that you make of Hyper/J, if you can are able to share them with us. Please send
feedback and thoughts to hyperj-support@watson.ibm.com.

 Copyright © IBM Corporation, 2000

Obtaining and Installing Hyper/J™
2.1. How to Obtain Hyper/J

The Hyper/J binary (plus its supporting documentation) is available without fee on IBM’s
alphaWorks web site, http://www.alphaworks.ibm.com. Source code is not currently
available without special licensing arrangements.

If you are unable to download Hyper/J from alphaWorks, or if you have any problems with
the software, please send mail to hyperj-support@watson.ibm.com. We may be able to
provide Hyper/J for you on a CD or other medium.

2.2. System Requirements

Hyper/J™ is written in standard Java™, and it is released as a standard jar file. It has no
known operating system or virtual machine dependencies. It has been tested with several
versions of Sun's JDK, from 1.1.5 to 1.2.1.

The jar file is 1.6Mb in size. Hyper/J should therefore be run on machines with sufficient
processing power and memory to handle large Java™ programs.

2.3. Contents of the Release

Hyper/J and its supporting documentation come in a zip file. The zip file contains the
following:

n bin directory:

n hyperj.jar: A JAR file containing the Hyper/J class files.

n doc directory:

n hyperj-user-manual.ps: This file.

n demo directory: This directory contains the Java source code and various Hyper/J
specification files (described in Chapter 4) for an example software engineering
environment application (elaborated in Chapter 5).

Chapter

2

Copyright © IBM Corporation, 2000 2

2.4. Installing Hyper/J

Once you have downloaded the zip file containing the Hyper/J release from AlphaWorks,
you must choose a directory in which Hyper/J will reside. We will refer to this directory as
%HYPERJ_DIR% (using Microsoft Windows environment variable syntax). Then do the
following:

n Move the Hyper/J zip file into %HYPERJ_DIR%.

n Unzip the Hyper/J zip file. Unzipping will create the subdirectories noted in Section
2.3. The Hyper/J JAR file, hyperj.jar, is in the bin subdirectory.

n Add %HYPERJ_DIR%/bin/hyperj.jar to your CLASSPATH.

At this point, you can run Hyper/J using the command

%JAVA_COMMAND% com.ibm.hyperj.hyperj <command line options>

where %JAVA_COMMAND% is the command you invoke to run your Java interpreter; for
example, the command is java when using Sun’s JVM. The command-line options are
described in Section 4.1.

For your convenience, we recommend defining a batch file or some form of shell script to
run Hyper/J. This script can set the CLASSPATH and run Hyper/J.

2.5. Installation Problems

In the unlikely event that you encounter difficulties in downloading or unpacking Hyper/J,
please contact hyperj-support@watson.ibm.com. Be sure to include the following
information in your message:

n Your operating system.

n The version of Hyper/J you downloaded.

n The error message(s) you are seeing.

 Copyright © IBM Corporation, 2000

An Introduction to Multi-Dimensional
Separation of Concerns
3.1. Separation of Concerns

Separation of concerns [par72] is at the core of software engineering, and all developers
do it. In its most general form, it refers to the ability to identify, encapsulate, and
manipulate only those parts of software that are relevant to a particular concept, goal, or
purpose. Concerns are the primary motivation for organizing and decomposing software
into manageable and comprehensible parts. Many different kinds of concerns may be
relevant to different developers in different roles, or at different stages of the software
lifecycle. For example, the prevalent kind of concern in object-oriented programming is the
class; each concern of this kind is a data type defined and encapsulated by a class.
Features [tur98], like printing, persistence, and display capabilities, are also common
concerns, as are aspects [kic97], like concurrency control and distribution, roles [and92],
viewpoints [nus94], variants, and configurations. We refer to a kind of concern, like class
or feature, as a dimension of concern. Separation of concerns involves decomposition of
software according to one or more dimensions of concern. Achieving a “clean” separation
of concerns can help

n reduce software complexity and improve comprehensibility.

n promote traceability within and across artifacts and throughout the software lifecycle.

n limit the impact of change, facilitating evolution and non-invasive adaptation and
customization.

n facilitate reuse.

n simplify component integration.

These goals, laudable and important as they are, have not yet been achieved in practice.
This is primarily because the set of relevant concerns varies over time and is context-
sensitive—different development activities, stages of the software lifecycle, developers,
and roles often involve concerns of dramatically different kinds and, hence, multiple
dimensions. Separation along one dimension of concern may promote some goals and
activities, while impeding others; thus, any criterion for decomposition and integration will
be appropriate for some contexts and requirements, but not for all. For example, the by-
class decomposition in object-oriented systems greatly facilitates evolution of data
structure details, because they are encapsulated within single (or a few closely related)
classes, but it impedes addition or evolution of features, because features typically include
methods and instance variables in multiple classes. Further, multiple dimensions of
concern may be relevant simultaneously, and they may overlap and interact, as features

Chapter

3

Copyright © IBM Corporation, 2000 2

and classes do. Thus, modularization according to different dimensions of concern is
needed for different purposes: sometimes by class, sometimes by feature, sometimes by
viewpoint, aspect, role, or other criterion.

3.2. An Example: Expression SEE

To illustrate some of the serious and ubiquitous problems in software engineering that are
caused by the tyranny of the dominant decomposition, we begin by describing a running
example involving the construction and evolution of a simple software engineering
environment (SEE) [tar99]. We will use this example for illustrative purposes throughout
this manual. Chapter 5 discusses how Hyper/J can be used to facilitate the development
of this example, solving the problems raised here.

The SEE aids in the development of fairly simple programs that consist solely of
expressions, such as “A=B+5”. Expression programs constructed using the SEE are
represented using abstract syntax trees (ASTs), as illustrated in Figure 1. This
environment has a straightforward and commonly used architecture, also shown in Figure
1, in which a collection of tools operates on a shared data structure—the AST. Though the
example is, of necessity, small and simple, it is typical of a broad class of real systems that
involve multiple tools or applications manipulating wholly or partially shared domain
models.

Display Check Eval

=

a

b 5

+

a := b + 5 syntax correct a = 16

Figure 1. Tools and Shared AST in the Expression SEE.

The running example involves the initial creation of the SEE and a series of evolutionary
changes to it. We assume a simplified initial software development process, consisting of
informal requirements specification in natural language, design in UML [rum98], and
implementation in Java™ [gos96]. The initial requirements specification is straightforward:

The SEE supports the creation and manipulation of expression programs.

It contains a set of tools that share a common representation of expressions. The
set of tools should include the following:

Copyright © IBM Corporation, 2000 3

n Evaluation tool: Determines the result of evaluating an expression and
displays it.

n Display tool: Depicts an expression program textually to a default display
device.

n Check tool: Checks an expression program for syntactic and semantic
correctness.

A straightforward partial UML design for the SEE is shown Figure 2. This design uses a
standard, object-oriented approach, in which each kind of expression AST node has a
corresponding class defined that represents it. Each class contains constructor, accessor
and modifier methods, plus methods eval(), display(), and check(), which realize the
required tools in a standard, object-oriented manner. The code is structured similarly, and
is included in full in the Hyper/J release, in the demo directory.

create
get/set methods
eval()
display()
check()

create
get/set methods
eval()
display()
check()

create
get/set methods
eval()
display()
check()

create
get/set methods
eval()
display()
check()

create
get/set methods
eval()
display()
check()

create
get/set methods
eval()
display()
check()

create
get/set methods
eval()
display()
check()

create
get/set methods
eval()
display()
check()

Literal BinaryOp UnaryOp

Plus Minus UnaryPlus UnaryMinus

Expression

“Tools” are implemented as
methods on each AST class

Figure 2. Partial UML Design for the Expression SEE

Even this simple example demonstrates several different kinds (dimensions) of concerns.
These include:

n Classes (or Objects): Each of the classes in the design and code represents one
class concern.

n Features: Particularly from the statement of requirements, we can decompose the
software into four coherent features: the “kernel” AST, which includes the actual
representation of expressions independently of any of the SEE tools; the display
feature; the check feature; and the evaluation feature. Note that each feature includes
the corresponding requirement specification, design elements, code, and test cases,
since these all pertain to addressing that feature concern in the system.

Copyright © IBM Corporation, 2000 4

n Artifacts: Traditionally, different stages of the software lifecycle produce different
kinds of software artifacts. Some common ones are requirements specifications,
designs, code, and test plans.

As noted earlier, we refer to these different kinds of concerns as dimensions of concern.
Informally, a dimension of concern is simply an approach to decomposing, organizing, and
structuring software according to concerns of a particular kind. Note that, despite the clear
presence of these different dimensions of concern, only a subset of them can be identified
and encapsulated explicitly in the languages used in this example: artifacts, features within
the requirements artifact, and objects within the design and code artifacts.

After using the resulting SEE, the clients request some changes:

It should be possible to have versions of the SEE that include subsets of the
tools and capabilities.

It should be possible to impose, optionally, checks for conformance to one or
more programming styles.

It should be possible to log, selectively, the execution of the SEE.

This set of modifications suggests the following set of concerns:

n Configurations: The first new requirement—to permit different variants of the SEE
with different tool configurations—is essentially a request to be able to “mix and
match” tools in the SEE. Thus, we can think of the SEE as representing a family of
software [par76], where each member of the family contains some combination of
tools.

n Feature : Style checking is a new concern in the feature dimension.

n Logging: Logging is not the same kind of “feature” as the SEE tools—it is not a
coherent tool itself, and it may (optionally) affect some or all of the features during any
execution of the SEE.

n Design patterns: While the initial version of the software was simple enough not to
require any design patterns [gam94], some of the new requirements present
opportunities to benefit from the extra flexibility that design patterns offer. For
example, the logging capability could be modeled readily using Observer. From the
perspective of comprehensibility, it may be beneficial to look at software in terms of
the design patterns from which it is architected [kel99].

Satisfying these rather straightforward requirements is by no means a simple matter with
standard object-oriented technology. Allowing selection of features and addition of optional
style checking requires substantial reengineering, probably to introduce infrastructure, like
design patterns (notably, Visitor), that provides the needed flexibility. Support for logging
requires invasive changes to every method to be logged, to perform the logging directly or
to participate in Observer design patterns. A more detailed analysis of a similar example
appeared in [tar99].

Copyright © IBM Corporation, 2000 5

3.3. The Tyranny of the Dominant Decomposition

Even the simple example above illustrates that developers must be able to identify,
encapsulate, modularize, and manipulate multiple dimensions of concern simultaneously,
and must be able to introduce new concerns and dimensions at any point during the
software lifecycle, without suffering the effects of invasive modification and rearchitecture.
Modern languages and methodologies, however, suffer from a problem we have termed
the tyranny of the dominant decomposition [tar99]: they permit the separation and
encapsulation of only one kind of concern at a time. Examples of tyrant decompositions
are classes (in object-oriented languages), functions (in functional languages), and rules
(in rule-based systems). It is, therefore, impossible to encapsulate and manipulate, for
example, features in the object-oriented paradigm, or objects in rule-based systems. Thus,
it is impossible to obtain the benefits of different decomposition dimensions throughout the
software lifecycle. Developers of an artifact are forced to commit to one, dominant
dimension early in the development of that artifact, and changing this decision can have
catastrophic consequences for the existing artifact. What is more, artifact languages often
constrain the choice of dominant dimension (e.g., it must be class in object-oriented
software), and different artifacts, such as requirements and design documents, might
therefore be forced to use different decompositions, obscuring the relationships between
them.

When software is decomposed into modules based on one, dominant dimension of
concern, software addressing other concerns is not localized: it is scattered across many
modules, and within most of these, it is tangled with software addressing other concerns.
For example, the “display feature” in the expression SEE is implemented by display()
methods in multiple classes. This feature (a concern) is therefore widely scattered across
the class hierarchy, and within each class, is tangled with methods for other concerns.

We believe that the tyranny of the dominant decomposition is the single most significant
cause of the failure, to date, to achieve many of the expected benefits of separation of
concerns.

3.4. Breaking the Tyranny: Multi-Dimensional Separation of Concerns

We use the term multi-dimensional separation of concerns to denote separation of
concerns involving:

n Multiple, arbitrary dimensions of concern.

n Separation along these dimensions simultaneously. No dominant dimension should
preclude separation along other dimensions.

n The ability to handle new concerns, and new dimensions of concern, dynamically, as
they arise throughout the software lifecycle.

n Overlapping and interacting concerns; it is appealing to think of many concerns as
independent or “orthogonal,” but they rarely are in practice.

Full support for multi-dimensional separation of concerns opens the door to on-demand
remodularization, allowing a developer to choose at any time the best modularization,
based on any or all of the concerns, for the development task at hand.

Copyright © IBM Corporation, 2000 6

Multi-dimensional separation of concerns represents a set of very ambitious goals. They
apply irrespective of software development language or paradigm. Our own, evolving
approach to satisfying them is called hyperspaces (described below). The Hyper/J tool
provides hyperspace support for Java™.

3.5. Hyperspaces

Hyperspaces permit the explicit identification of any dimensions and concerns of
importance, at any stage of the software lifecycle; encapsulation of those concerns;
identification and management of relationships among those concerns; and integration of
concerns. This section describes hyperspaces in general terms, to introduce the concepts
upon which Hyper/J is based.

3.5.1. Concern Space of Units

Software consists of artifacts, which comprise descriptive material in suitable languages. A
unit is a syntactic construct in such a language. A unit might be, for example, a
declaration, statement, state chart, class, interface, requirement specification, or any other
coherent entity that can be described in a given language. We distinguish primitive units,
which are treated as atomic, from compound units, which group units together. Thus, for
example, a method, instance variable, or performance requirement might be treated as a
primitive unit, while a class, package, or collaboration diagram might be treated as a
compound unit.

A concern space encompasses all units in some body of software, such as a set of
software systems or component libraries, or a product family. For example, a concern
space for the expression SEE contains all of the software artifacts described earlier for
both the initial system and the extensions

The job of a concern space is to organize the units in the body of software so as to
separate all important concerns, to describe various kinds of interrelationships among
concerns, and to indicate how software components and systems can be built and
integrated from the units that address these concerns. We identify three distinct
components to “separation” of concerns:

n Identification is the process selecting concerns and populating them with the units that
pertain to them.1 Thus, for example, we can identify the “display feature” concern in
the expression SEE as comprising the display requirement and all display() methods
in the UML design diagrams and the Java™ code.

n Encapsulation. Identification is useful, but to realize fully the benefits of separation of
concerns, the concerns must also be encapsulated so that they can be manipulated
as first-class entities. A Java™ class is an example of an encapsulated concern. The
display feature is not an encapsulated concern in Java™, however, as its units are
scattered across many Java™ classes.

1 Note that concern identification can be done either top-down or bottom-up, depending on the stage of the
software lifecycle. During design activities, concerns may be selected first, and then units may be developed
based on the concerns that were selected. During system evolution, units may already exist w hen new concerns
are identified. In this case, the identification process determines which existing units address the new concerns.

Copyright © IBM Corporation, 2000 7

n Integration. Once concerns have been encapsulated, it must be possible to integrate
them to create software that addresses multiple concerns. For example, developers
may want to create a version of a software system that contains the “check” and
“display” features. In standard Java™, classes are integrated simply by loading them;
a combination of import specifications and the class path determines their
relationships. Concerns other than classes and interfaces cannot be integrated in
standard Java™.

3.5.2. Identification of Concerns: The Concern Matrix

A hyperspace is a concern space specially structured to support our approach to multi-
dimensional separation of concerns. Its first distinguishing characteristic is that its units are
organized in a multi-dimensional matrix. Each axis represents a dimension of concern,
and each point on an axis a concern in that dimension. This makes explicit all the
dimensions of interest, the concerns that belong to each dimension, and which concerns
are affected by which units. The coordinates of a unit indicate all the concerns it affects;
the structure clarifies that each unit affects exactly one concern in each dimension.

Each dimension can thus be viewed as a partition of the set of units: one particular
software decomposition. Any single concern within some dimension defines a hyperplane
that contains all the units affecting that concern. The matrix structure permits uniform
treatment of all kinds of concerns, and it allows developers to navigate or slice through the
matrix according to any desired concerns.2

Some dimensions of concern naturally partition the concern space. For example, if every
unit in a system addresses exactly one feature, then the Feature dimension naturally
partitions the units. However, some units in a system may not pertain to any “feature” at
all, such as an error-reporting routine in the SEE. To handle this situation, each dimension
in a hyperspace has a specially-designated “none” concern, containing units that are not
of interest from the perspective of that dimension.

3.5.2.1 Units

Hyperspaces can be used to organize and manipulate units written in any language(s),
though, of course, tool support is generally language-specific. To date, we have worked
only with units at the granularity of declarations (e.g., methods, functions, classes, UML
diagrams) rather than lower-level constructs, such as statements or expressions.3

Hyper/J treats Java member functions and member variables as primitive units, and
interfaces, classes and packages as compound units.

3.5.2.2 Concern Specifications

Concern specifications in hyperspaces serve to identify the dimensions and their
concerns, and to specify the coordinates of each unit within the matrix. A simple approach,
used in Hyper/J, is a set of concern mappings (described further in Section 4.1.1.2) of the
form

2 We believe that the concerns within a dimension, though disjoint, need not be unrelated, and we expect some
concern structure (e.g., hierarchies) within dimensions to be valuable [oss88, kim99]. This remains an issue for
future research, and is not yet supported by Hyper/J.
3 We believe that hyperspaces can be extended to handle finer-grained units in a disciplined fashion; this remains
an issue for future research, and is not yet supported by Hyper/J.

Copyright © IBM Corporation, 2000 8

x: dimension.concern

where x is the name of a unit or a collection of units (e.g., a directory or package), or a
pattern representing many units or collections of units.4

3.5.3. Encapsulation of Concerns: Hyperslices

The concern matrix identifies concerns and organizes units according to dimensions and
concerns. It allows many useful sets of units to be identified based on the concerns they
affect, such as all units pertaining to a single concern, or to all of several concerns (areas
of overlap), or to one concern but not another. However, the matrix does not, in itself,
support encapsulation of concerns: the sets of units cannot simply be treated as modules
without additional mechanism. In hyperspaces, that additional mechanism is the
hyperslice: a set of concerns that is declaratively complete, which means that they must
declare everything to which they refer.

Units are typically related in a variety of ways; for example, one function unit may invoke
another, or it may define or use a variable declaration unit. When these kinds of
interrelationships exist between units in different concerns, high coupling results. The
declarative completeness property of hyperslices is intended to decouple hyperslices from
each other. Declarative completeness means, for example, that a hyperslice must, at
minimum, include a declaration for every function that any of its members invokes, and for
any variable its members use. The hyperslice need not provide a full definition for these
declarations—e.g., it may declare a function without providing an implementation. Thus,
declarations can be abstract, specifying (partially or fully, formally or informally) the
properties upon which the hyperslice relies.

Declarative completeness is important because it eliminates coupling between
hyperslices. Instead of one hyperslice referring to another, thereby depending upon the
other specific hyperslice, each hyperslice states what it needs by means of the abstract
declarations, thereby remaining self-contained. It does, however, require someone to
provide full definitions of the abstractly-declared entities to be fully complete, but any
appropriate hyperslice(s) can provide these, through integration. This approach therefore
fosters flexible configuration and reuse of hyperslices, and is crucial to achieving limited
impact of change.

For example, suppose a Display hyperslice contains a unit, Plus.display(), which uses a
Plus.getOperand() accessor function, defined in a Kernel hyperslice. To make Display
declaratively complete, it must be augmented with its own declaration of
Plus.getOperand() (without necessarily implementing it). Plus.display() must then refer to
this local declaration, instead of to the accessor function in the Kernel. This eliminates the
coupling between Display and Kernel, in favor of the assertion that the new, abstract
declaration must eventually be “bound” to a unit in some hyperslice that provides a
suitable implementation.

Any set of units can be fashioned into a valid hyperslice by declaration completion:
providing abstract declarations for everything referenced but not declared within the set.

4 In general, concern specifications can be more complex, and can specify the “meaning” of each dimension and
concern formally or informally. There are two styles of specification. Extensional specifications explicitly enumerate
the units in each concern. Intensional specifications specify properties of concerns and units that can be used to
determine whether a given unit pertains to a concern. Intensional specifications have the advantage of conveying
intent more explicitly, and of being able to accommodate changes to the underlying set of units without manual
intervention.

Copyright © IBM Corporation, 2000 9

This process can be performed automatically, using straightforward (though language-
specific) analysis; this is done in Hyper/J.5

Since any set of units can become a hyperslice through declaration completion, arbitrary
concerns can be encapsulated using hyperslices. Thus, whatever limitations the
underlying artifact language(s) has, and whatever the concern, it is always possible to
synthesize a hyperslice that contains just those units pertaining to the concern (plus some
abstract declarations).

3.5.4. Relationships among Concerns

Units, concerns and hyperslices do not exist in isolation; they can be interrelated in a
number of different ways. For example, the “display feature” and the “expression class”
are related in that they overlap—they share some of the same units, as the display()
method is part of both concerns—so a change to one concern may affect the other. As
another example, we might choose to integrate “syntax check” and “style check”
hyperslices to produce a “check” feature that performs both syntax and style checks. In
this case, these two hyperslices would be related by one or more integration relationships
that indicate how they are to be combined.

We can identify two distinct classes of relationships: context-insensitive and context-
sensitive. “Overlap” is an example of a context-insensitive relationship—the “display
feature” and “expression class” are always related this way, as long as they share units in
common. Integration relationships exemplify context-sensitive relationships—the “syntax
check” and “style check” concerns only have this relationship if they are being integrated in
some context (e.g., to create a check tool), but the relationship is not inherent in their
definition. Other common kinds of concern relationships are “generalizes,” “subsumes,”
and “precludes.” Hyperspaces permit the identification and representation of both context-
insensitive and context-sensitive relationships, and their use in analysis (e.g., impact of
change) and integration, though the current release of Hyper/J supports just integration
relationships.

3.5.5. Integration of Concerns: Hypermodules

Hyperslices are building blocks; they can be integrated to form larger building blocks and,
eventually, complete systems. For example, to create a working SEE containing the
Display hyperslice discussed above, Display must be integrated with some other
hyperslice that provides a unit that can be bound to the new, abstract declaration of
Plus.getOperand(), to provide an implementation. We refer to this kind of “binding”
relationship between units as correspondence. Correspondence is a context-sensitive
relationship. It occurs within the context of the integration of a particular software
component or system—the same declaration unit may be associated, for example, with
different implementation units in different systems. In a hyperspace, this integration
context is a hypermodule.

A hypermodule comprises a set of hyperslices being integrated and a set of integration
relationships, which specify how the hyperslices relate to one another, and how they
should be integrated. Correspondence is an important integration relationship, indicating

5 Automatic declaration completion determines what declarations are needed, and can create valid declarations.
Semantic information associated with declarations—formal or informal specifications—is another matter however,
and probably requires human intervention. Specifications on declarations, and the extent to which they can be
determined automatically by analysis during declaration completion, remain issues for future research, and are not
currently supported by Hyper/J.

Copyright © IBM Corporation, 2000 10

which specific units within the different hyperslices are to be integrated with one another.
However, additional details are often needed to specify just how the integration is to occur.
For example, if two methods correspond, should one override the other in the integrated
system, or are they both to be executed? If both, in what order, and how should the return
value be computed? If the types of their parameters do not match, what transformations
are needed to reconcile them? In the example above, it is sufficient to integrate the
corresponding declarations of Plus.getOperand() in Display and Kernel, which results in
the Kernel implementation being called by Plus.display() at run time. Integration
relationships in Hyper/J™ extend the composition rules from our earlier work on subject-
oriented programming [oss96].

Conceptually, and often in practice through use of a compositor tool (such as that included
within Hyper/J), the integration specified by integration relationships can actually be
performed to produce a set of integrated units. This set will be declaratively complete, and
is therefore a hyperslice. A hypermodule can therefore be thought of as a composite
hyperslice, produced by integrating a number of subsidiary hyperslices. This implies that
hypermodules can be nested, allowing large systems to be built by successive integration.

Declarative completeness, correspondence, and even the more detailed integration
relationships, represent fairly loose forms of binding, which promotes evolvability. Since
hyperslices do not depend on each other directly, software artifacts are subject to a
completeness constraint in which each declaration unit in a system must correspond to
compatible definition(s) or implementation(s) in some hyperslice(s). Replacing a definition
or implementation is non-invasive on hyperslices; it merely requires the redefinition of
integration relationships. Correspondence thus provides great flexibility and directly
supports substitutability, including mix-and-match and plug-and-play. Completeness
constraints can be imposed as needed (e.g., on code, to ensure that it can run), but they
are not necessary when a hypermodule represents a building block (e.g., a reusable
component or framework), whose remaining needs can be satisfied through future
integration.

Clearly, the issue of whether corresponding units are “compatible” (e.g., whether an
implementation unit satisfies a declaration unit’s requirements, or whether a design unit
satisfies a requirement) involves both syntactic and semantic issues. How to characterize
and check for such compatibility remains an issue for future research. Even once
resolved, however, we expect checking to be semi-automatic in general; ultimately,
software engineers must understand enough about corresponding units to determine
whether or not they are compatible and how best to integrate them. Hyper/J currently
performs checks for syntactic compatibility only; semantic compatibility is the responsibility
of the developer.

Hypermodules can be used to encapsulate many kinds of software artifacts, components,
and fragments thereof, and to integrate them in different ways. For example, an entire
artifact, like a requirements specification, a design, or code, can be modeled as a
hypermodule. A software system as a whole is also a hypermodule, subject to the
declarative completeness constraint. A system hypermodule might consist of a hyperslice
for each artifact, with correspondence relationships describing how the artifacts interrelate;
they might, for example, indicate how particular design and code units elaborate given
requirements units. Alternatively, it might consist of a subsidiary hypermodule for each
feature, with integration relationships specifying how the features interact. Each feature
hypermodule, in turn, consists of a hyperslice for each artifact, with integration
relationships as above.

Copyright © IBM Corporation, 2000 11

3.6. Hyper/J™

Hyper/J is a tool that realizes hyperspaces for Java™ code. In so doing, it permits
developers to achieve improved modularity initially and throughout the course of the
software development lifecycle; adaptation, customization, and integration through
composition; traceability through correspondence and other relationships across
hyperslices; loose coupling and “mix and match” through declarative completeness; and
on-demand remodularization.

Hyper/J currently supports units that are Java™ packages, interfaces, classes and
members. It supports a concern matrix of these units, and the ability to make hyperslices
from sets of units and then to integrate the hyperslices into hypermodules. It generates
Java™ class files for all hypermodules produced. These can be executed, if complete, or
used as building blocks for further development.

 Copyright © IBM Corporation, 2000

Using Hyper/J
4.1. Running the Tool

Hyper/J is a standard Java™ application. It is therefore run the same way as any other
Java main program—by invoking whatever Java virtual machine you use. For example, if
using Sun’s JVM, Hyper/J is invoked as:

java com.ibm.hyperj.hyperj <options>

The fully qualified name (with the whole file path) of the Hyper/J jar file either must be in
your CLASSPATH or must be passed as an option to the JVM. For example, if you
installed into a directory %HYPERJ_DIR%:

java –CLASSPATH=%HYPERJ_DIR%\bin\hyperj.jar com.ibm.hyperj.hyperj
<options>

We recommend defining a shell script (Unix), batch file (Windows), or other script to run
Hyper/J, to eliminate the extra typing (and possibility of error) that running the tool
manually entails.

If you are using a version of Sun JDK earlier than version 1.2, you must also include
explicitly all of the Java standard libraries in the CLASSPATH.

If you are using Sun JDK 1.2 or higher, you may need to add the following JDK files to
your CLASSPATH (if they are not already there):

%JAVA_DIR%\lib\tools.jar
%JAVA_DIR%\jre\lib\rt.jar
%JAVA_DIR%\jre\lib\jaws.jar
%JAVA_DIR%\jre\lib\i18n.jar

Add these files to your CLASSPATH if you run Hyper/J and it crashes with the exception
java.lang.NoSuchMethodError; this is usually the cause of this problem.

4.1.1. Hyper/J Required Command Line Parameters

Hyper/J’s command-line parameters can be specified in any order. They are currently
case-sensitive, however, so please be sure to specify them correctly.

4.1.1.1 Hyperspace Specification File:

The hyperspace specification file (described in Section 4.2.1) is similar to a project
description. It lists all of the Java class files with which a developer is working, and to

Chapter

4

Copyright © IBM Corporation, 2000 2

which the developer wishes to apply Hyper/J. Hyperspace specification files are specified
as:

-hyperspace c:\users\smith\someProject\project.hs

The name of the hyperspace specification file may include either a relative path or a full
path.

In some cases, it is possible to omit the –hyperspace specification and to allow Hyper/J to
derive one automatically. See Section 4.2.1.3 for a description of this feature.

4.1.1.2 Concern Mapping File(s):

Concern mapping files describe how various pieces of Java class files address different
concerns in a hyperspace. Developers must specify at least one concern mapping file
when running Hyper/J, but they may specify multiple concern mappings (separated by one
or more blank spaces). For example:

-concerns concernFile1.cm c:\users\smith\someProject\concernFile2.cm

Concern mapping files can be specified using either absolute or relative paths, as shown
above, where the file concernFile1.cm is taken from the current directory, while
concernFile2.cm is taken from the directory c:\users\smith\someProject.

The contents of concern mapping files are described in Section 4.2.2.

4.1.1.3 Hypermodules or Relationships Specification File:

The hypermodule specification file (discussed in Section 4.2.3) describes one or more
hypermodules—integrations of concerns—that a developer wishes to create. Developers
must indicate a hypermodule specification file as follows:

-hypermodules ..\someProject\myHypermodules.hm

The hypermodule specification file may be specified using either absolute or relative paths.

In cases where developers are working with small projects, they may wish to specify only
the integration relationships that are part of a hypermodule specification (see Section
4.2.3), rather than a complete hypermodule specification. In such cases, the developer
may use the –relationships option in place of the –hypermodules option, specifying instead
a file that contains just the appropriate integration relationships:

-relationships ..\someProject\myRelationships.hm

Section 4.2.3 describes this feature in more detail.

4.1.1.4 Using a Single Control File:

Some users will find that keeping the hyperspace, concern mapping, and hypermodule
specifications in separate files (as shown in Sections 4.1.1.1-4.1.1.3) is most convenient
for them. Others, who have short specifications or commonly used specifications, may
find it more convenient to specify all of this information in a single file, which can be
passed as a parameter to Hyper/J. Thus, rather than specifying the -hyperspace, -

Copyright © IBM Corporation, 2000 3

concerns and –hypermodules (and other options) separately on the command line and
putting these specifications into three separate files, it is also possible to put all of the
options into a single file, and to name that file as the first parameter to Hyper/J:

java com.ibm.hyperj.hyperj demo.opt –verbose

This option indicates that the file demo.opt contains all of the option information,
including the hyperspace, hypermodule, and concern mapping specifications. The format
of demo.opt might be:

-hyperspace
 <include either a hyperspace declaration or a hyperspace
 specification file name here; see Section 4.2.1 for a description
 of hyperspace specifications>
-concerns
 <include concern mappings, or concern mapping file names, here;
 see Section 4.2.2 for a description of concern mappings>
-hypermodules
 <include hypermodule specification, or hypermodule specification
 file name, here; see Section 4.2.3 for a description of
 hypermodule specifications>

This file could also contain any of the other Hyper/J options, such as –verbose.

4.1.2. Optional Hyper/J Command-Line Parameters

Hyper/J supports some additional, optional parameters, which are used to control the
tool’s output.

4.1.2.1 Output Directory

By default, Hyper/J will place composed class files into a subdirectory of the current
directory. (This directory will always have the same name as the hypermodule from which
the composed classes were created; if integration relationships are specified instead of a
complete hypermodule (see Section 4.1.1.3), the directory name used is Composition.)
The –output option permits the developer to select a different directory into which to
place the subdirectory:

-output c:\users\smith\someProject\hypermodules

The above example will cause Hyper/J to put the composed class files into a subdirectory
of the directory c:\users\smith\someProject\hypermodules, rather than into the
directory from which Hyper/J was run.

Note that the –output option will NOT change the name of the subdirectory that Hyper/J
creates—it will simply change the location of that subdirectory. To change the name of
the subdirectory, it is necessary to change the name of the hypermodule in the
hypermodules specification file.

The output directory can be specified using either absolute or relative paths. The named
directory must exist; Hyper/J will not create it if it does not exist.

Copyright © IBM Corporation, 2000 4

4.1.2.2 Verbose

The –verbose option is used to instruct Hyper/J to print some helpful status information
at important points during its execution. It also causes Hyper/J to create unparse files (see
Section 4.2.5), and a dump of the hyperspace showing the dimensions and concerns that
were created and the units that address each concern. These files can be used to help
debug erroneous hypermodule specifications (or Hyper/J itself).

4.1.2.3 Debug

The –debug option tells Hyper/J to generate various forms of information that are useful
for debugging erroneous hypermodule specifications, or Hyper/J itself. This option is
recommended for advanced users only, as the information it produces is not readily
comprehensible without more detailed understanding of Hyper/J’s implementation.

4.2. Formats of Hyper/J Inputs and Outputs

4.2.1. Hyperspace Specification File

Hyperspace specification files are similar to project definitions; they simply describe the set
of Java class files with which a developer is working. The format of a hyperspace
specification file is:

hyperspace hyperspaceName
 classFileSpecification;
 classFileSpecification;
 ...

4.2.1.1 Hyperspace Name:

Each hyperspace specification must give a name to the hyperspace. This name should
be chosen to be mnemonic—for example, it might be the name of the project (e.g.,
someProject), or a description of the goals of the hyperspace (e.g.,
reusableComponentsHyperspace).

4.2.1.2 Class File Specification:

The class file specifications name one or more Java class files that are to be treated as
part of the hyperspace. (Note that a given Java class file can be part of multiple
hyperspaces.) The class file specifications take one of the following forms (shown by
example):

class package1.className1, package1.className2;
composable class package2.* except package2.someClass;
composable class package3.* including subclasses;
composable file c:\users\smith\someProject*;
uncomposable class java.lang.*, java.io.*;

Class files can be specified either by using Java fully qualified class (or interface) names
(as in the first two lines above), or by using file names (the second two lines). For
example, the standard Java utility class Hashtable could be included in a hyperspace by

Copyright © IBM Corporation, 2000 5

referring to it by its fully qualified name (java.util.Hashtable) or by its class file
name (e.g., c:\programs\java\src\java\util\Hashtable.class). If the class
file name form is used instead of the qualified name, you must include the fully specified
absolute path; relative paths are not accepted. If you use the qualified name, you must be
sure that your CLASSPATH environment variable is set appropriately, just as you would
do for the Java compiler, so that Hyper/J can find the packages and classes to which you
refer. Class file specifications do not distinguish classes from interfaces; you may include
either in a class or file specification.

Class file specifications may include simple wildcarding, as shown above. The * wildcard
indicates that all of the classes or class files in a given package or directory are to be
included in the hyperspace. No other wildcards are supported at present. If a developer
wants to include most of the classes or files in a package or directory, but wishes to
exclude a small number of them, s/he can use the except clause, as shown in the second
line of the above example. That class file specification indicates that all classes in a
package named package2 are to be included in the hyperspace, except for the class
package2.someClass. Any number of exceptions can be listed, separated by commas.

Class file specifications include the designation composable or uncomposable; if neither
is specified (as in the first line of the example above), the default is composable.
Composable means that the named classes can be composed with other classes: they
might be composed automatically, e.g., with like-named classes in other packages, and
they can participate in integration relationships. Uncomposable means that they may not
be composed: no automatic composition will occur, and they may not participate in
integration relationships. In general, library classes (like the Java predefined classes,
such as Object and String) should be treated as uncomposable. Please be aware that if
you do not include a class file specification for some class to which one of the included
composable classes refers, the omitted class will be included in the hyperspace
automatically, but it will be treated as uncomposable. This may lead to some composition
behavior that you did not expect. For this reason, we recommend listing all of the classes
you care about explicitly. If you see unexpected behavior and want to determine whether
it is because some classes were treated as uncomposable when you intended to have
them be composable, check the unparse files (Section 4.2.5). These indicate, for each
class in the hyperspace, whether or not that class is composable.

Whereas classes used by composable classes are included automatically, classes that
use composable classes cannot be. It is critical that all such classes of interest in the
project be included in the class file specifications. If they are not, they will not call the
composed classes produced by Hyper/J when they execute, and will therefore not be
affected by the composition.

Copyright © IBM Corporation, 2000 6

In some cases, users may discover that they would like to make composable any
subclasses of a given composable class, without having to list the subclasses explicitly.
The modifier including subclasses can be used in a composable class specification to
indicate that any subclasses of the named class should themselves be composable.
Hyper/J will search the class path to find the subclasses. By default, these subclasses will
be placed in the same concern as their superclass.

4.2.1.3 Omitting the Hyperspace Specification File: A Simplification

In some cases, it is possible to omit the hyperspace specification and let Hyper/J create
one automatically. If you do not define a hyperspace specification, Hyper/J will derive one
automatically from the concern mapping (Section 4.2.2). It uses the following rules to
create the hyperspace specification:

n For concern mappings of the form

package P : Dimension.Concern

Hyper/J adds each class defined in package P to the hyperspace as a composable
class.

n For concern mappings of the form

package P as in package Q : Dimension.Concern

For every class named C that appears in both packages P and Q, Hyper/J will add
P.C to the hyperspace as a composable class.

Note: This is not done recursively! If recursive inclusion is required, the developer
must define a hyperspace specification and cannot use the default behavior.

The hyperspace specification that Hyper/J generates is written to a file named
__default.hs. If the default hyperspace specification is not quite correct, users are free
to edit this file and then specify it explicitly when running Hyper/J subsequently (using the
–hyperspace option).

Notes:

n A current limitation of Hyper/J is that it will only derive hyperspace specifications
automatically based on package concern mappings. It does not yet treat class
concern mappings (e.g., “class P.C : Dimension.Concern”).

4.2.2. Concern Mapping File(s)

Concern mapping files define a set of dimensions and concerns that you have, and they
describe how the classes and interfaces in your hyperspace, and their members, address
those dimensions and concerns (see Chapter 3).

Hyper/J automatically creates one dimension, the Class File dimension, when it processes
your hyperspace specification file, and it creates one concern in that dimension for each of
the class files it reads as part of the hyperspace (whether you specify them as classes or
as class files). The class file dimension is, therefore, the one that you use when you want

Copyright © IBM Corporation, 2000 7

to work with standard, object-oriented concerns (classes and interfaces). The concern
mapping file is used to describe any other dimensions and concerns that you may have.

Concern mapping files consist of any number of mappings, each of the form:

packageMapping | classMapping | interfaceMapping | operationMapping |
fieldMapping

We describe the kinds of mappings below.

Notes:

n The processing of concern mapping files follows the general principle that later
mappings supercede earlier ones. This permits developers to specify mappings that
apply in the general case, and then later indicate exceptions to the earlier mappings.
Note, however, that this induces order sensitivity—you often will not see the same
results if you write your concern mappings in different orders. If you are not sure
about what concern structure your concern mappings have produced, you should use
the –verbose option to Hyper/J, as this will produce a dump of the hyperspace that
you can examine.

n Concern mappings are case-sensitive. Please be sure to check the spelling and
capitalization of all identifiers, or you will likely see some unexpected results.

4.2.2.1 Package Mapping:

Package mappings are a shorthand way of allowing developers to indicate that the entire
contents of a given Java package address one particular concern. For example,

package java.lang : Feature.Library;
package someProject.util : Feature.Utilities;

The first concern mapping indicates that all of the classes and interfaces, and all of their
members, that are part of the package java.lang address the Library concern in the
Feature dimension. This mapping has two effects. First, if the hyperspace does not
contain a Feature dimension or a Library concern within that dimension, Hyper/J will
create them. Second, it indicates that the contents of package java.lang address the
Feature.Library concern.

Notes:

n If an earlier concern mapping had placed any of the classes or interfaces (or any of
their members) defined in package java.lang into a different concern in the
Feature dimension, this later concern mapping would supercede it, and the affected
units would be moved to the Library concern in the Feature dimension. Concern
mappings pertaining to other dimensions (such as the class file dimension) are not
affected.

4.2.2.2 Class and Interface Mapping:

Class and interface mappings permit developers to indicate that a given class or interface,
and all of its members, address a given concern in some dimension. For example,

Copyright © IBM Corporation, 2000 8

class someProject.util.MyClass : Optimizations.UtilityOptimizations;
interface java.util.Enumeration : OtherDimension.SomeConcern;

class FooClass : Feature.FooClassConcern;

The first and second concern mappings above indicate that the Java class
someProject.util.MyClass (and all of its members) address the
UtilityOptimizations concern in the Optimizations dimension, and that the
interface java.util.Enumeration addresses the SomeConcern concern in the
OtherDimension dimension. Again, if no concerns or dimensions by these names exist,
Hyper/J will create them. The third mapping is a shorthand way to indicate that all classes
named FooClass—no matter which Java package they are in—address the concern
named FooClassConcern in dimension Feature.

Notes:

n If an earlier concern mapping had placed any of the members (methods or member
variables) of class somePackage.util.MyClass or interface
java.util.Enumeration into a different concern in the Optimizations or
OtherDimension dimensions (respectively), the later concern mappings would
supercede the earlier ones, and the affected members would be moved to the
UtilityOptimizations and SomeConcern concerns in the Optimizations
and OtherDimension dimensions (respectively). Concern mappings pertaining to
other dimensions (such as the class file or Feature dimensions) are not affected.

4.2.2.3 Operation Mapping:

Operation mappings indicate that one or more operations address a given concern in
some dimension. There are two forms of operation mappings:

operation SomePackage.SomeClass.someMethod : Feature.SomeConcern;
operation foo : Feature.Foo;

The first form indicates that all methods named someMethod in class
SomePackage.SomeClass, irrespective of signature, address the concern
SomeConcern in the Feature dimension. The second form is a shorthand notation for
indicating that all methods named foo in the hyperspace—no matter what class or
interface they belong to, or whatever their parameters are—address the Feature.Foo
concern.

Notes:

n Constructors and static initializers can be mapped to concerns. Their names are
<init> and <clinit>, respectively, as they appear in class files (as defined by the
Java language specification).

n Hyper/J is currently limited to specifying operation mappings using only the operation
name, rather than also being able to include the signature. Signatures will be included
in an upcoming release.

n As in the other cases, later mappings override earlier ones for the same dimension.

Copyright © IBM Corporation, 2000 9

4.2.2.4 Field Mapping:

Field mappings are used to indicate that one or more instance or class (static) variables
address a particular concern. There are two forms of field mappings:

field SomePackage.SomeClass.instanceVar : Feature.SomeConcern;
field fooVar : Feature.Foo;

The first form indicates that the instance variable named instanceVar in class
SomePackage.SomeClass addresses the concern SomeConcern in the Feature
dimension. The second form is a shorthand notation; it indicates that all member variables
named fooVar that occur in the hyperspace—no matter what class they belong to—
address the Feature.Foo concern.

Notes:

n As in the other cases, later mappings override earlier ones for the same dimension.

4.2.2.5 “None” Concerns:

The fact that later mappings always override earlier ones for the same dimension ensures
that a unit can be in at most one concern within any particular dimension. In fact, the
hyperspace model requires that it be in exactly one concern. Each dimension therefore
has a special concern called None, and Hyper/J automatically puts any units not assigned
to any other concern in the dimension into its None concern. None concerns can also be
referred to explicitly.

None concerns are useful, because they are an intuitive and convenient place for units
that really do not affect a particular dimension. An example is given in Chapter 5.

4.2.3. Hypermodule or Relationships Specification File

A hypermodule specification file is used to define a hypermodule that is a particular
integration of the units pertaining to some selection of the concerns in the hyperspace.
Following the hyperspace model described in Chapter 3, it identifies some hyperslices that
are to be integrated, in terms of the concerns in the hyperspace, and specifies integration
relationships that give details of the desired integration:

hypermodule hypermoduleName
 hyperslices:
 dimensionName1.concernName1,
 dimensionName2.concernName2,
 ...
 relationships:
 mergeByName | nonCorrespondingMerge | overrideByName;
 other relationships
end hypermodule;

In cases where developers are working with small projects, they may wish to specify only
the integration relationships, rather than a complete hypermodule specification. In such
cases, the developer may define a relationship specification instead of a full hypermodule
specification. The relationship specification simply lists the desired integration
relationships:

Copyright © IBM Corporation, 2000 10

 mergeByName | nonCorrespondingMerge | overrideByName;
 other relationships

When a developer uses a relationship specification instead of a full hypermodule
specification, Hyper/J will derive the hypermoduleName and hyperslices (see Section
4.2.3.1 for a description of hyperslices) parts of the hypermodule specification
automatically, using the following rules:

n Hypermodule name: The name of the hypermodule is always Composition.

n Hypersl ices: Hyper/J includes as hyperslices all of the concerns that were
mentioned in the concern mappings (Section 4.2.2), in the order in which they were
mentioned. It does not include any of the None concerns, and it does not include any
of the concerns in the ClassFile dimension, which are created automatically by
Hyper/J.

If these rules will not produce the desired behavior, the developer must specify a complete
hypermodule specification, and should not use the simplified relationship specification.

Notes:

n The identifiers (hypermodule name, dimension names, and concern names) in
hypermodule specifications are all case-sensitive, but the relationship specifications
are not; thus, for example, mergeByName is equivalent to mergebyname.

4.2.3.1 Hyperslices—Concerns to be Integrated:

As described in Chapter 3, hyperslices are sets of units that are to be integrated.
Currently, they are specified simply as the names of concerns in the hyperspace. We
intend that these specifications will evolve, in future releases, to allow set operations, such
as union, intersection and set difference, on concerns.

4.2.3.2 Integration Relationships:

Integration relationships describe how the hyperslices are related and how they are to be
integrated together to form a new piece of software that contains some or all of the
functionality of the original hyperslices. They do this by indicating which units in
corresponding hyperslices match each other and how they should be synthesized
together into a new unit.

Note: Some of the relationships described in this section, or some of their options, are not
supported by the current release of Hyper/J. Please refer to Section 4.5 for a list of current
known limitations.

Some Terminology:

Hyper/J distinguishes between operations and actions. Both pertain to methods, but we
avoid use of the term “method” in an attempt to avoid confusion.

n Operations are like generic functions in CLOS or selectors in Smalltalk: they represent
a method name and signature, but do not commit to any particular declaration or
implementation in any particular class. Operations are typically implemented by
multiple classes, just like a method declared within an interface in Java™.

Copyright © IBM Corporation, 2000 11

n Actions, on the other hand, are implementations of operations for specific classes:
actual functions. When we do use the term “method” in the narrative, it is synonymous
with action.

There are some contexts in which an action must be specified. An operation specification
is usually permitted is such contexts, as shorthand for all the actions implementing that
operation.

4.2.3.3 Composition Strategy:

The specification of integration relationships in Hyper/J follows an approach where
developers first specify a general strategy for identifying matching units across
hyperslices, and then defining exceptions to, or specializations of, that strategy for those
cases where the strategy does not apply. Hyper/J supports three general strategies at
present. These are called mergeByName, nonCorrespondingMerge, and
overrideByName.

n mergeByName indicates that units in different hyperslices that have the same name
are to correspond, and are to be connected by a merge relationship, which causes
connected units to be integrated together into a new unit. This is the most commonly
used strategy.

n nonCorrespondingMerge means that units in different hyperslices with the same
name are not to correspond, and hence are not to be connected, by default, by any
relationship. Non-corresponding merge is generally used in circumstances where
units in different hyperslices accidentally have the same name, but are not actually
related to one another.

n overrideByName indicates that units with the same name are to correspond, and are
to be connected by an override relationship, which causes the last one to override the
others in the composed software. The order is determined by the order of the
hyperslices in the hypermodule specification: of the units related by any override
relationship, the one that prevails is the one belonging to the hyperslice that occurs
latest in the list. Overriding really only affects methods, indicating which is actually to
be executed. If one class overrides another, for example, that does not mean that it
totally replaces the other, just that it’s methods override corresponding methods in the
other.

The relationships section of every hypermodule specification begins with one of these
three strategies. They derive from the corresponding composition rules supported by
subject-oriented programming, whose semantics are described more formally in [oss96].

The general strategy may or may not be sufficient to describe the relationships across
hyperslices. If it is sufficient, no other relationships need be specified. If it is insufficient,
other relationships can be described. The other relationships Hyper/J supports are
defined in the remainder of this section. For each kind of relationship, we present the
syntax by example, and then explain the relationship’s semantics.

4.2.3.4 Equate:

equate class SomeDimension.SomeConcern.SomeClass,
 SomeOtherDimension.SomeOtherConcern.SomeOtherClass;

Copyright © IBM Corporation, 2000 12

equate operation Feature.Kernel.process,
 Feature.Check.check_process,
 Feature.Eval.eval_process,
 Feature.Display.display_process
 into myProcess;

The equate relationship indicates that a set of units are to match each other—to
correspond— even if their names are not the same. This relationship is used to set up
correspondence only—the specific integration relationship connecting the corresponding
units depends on the general composition strategy. For the first example above, if the
general strategy selected was mergeByName or nonCorrespondingMerge, this equate
relationship would cause the creation of a merge relationship between the two
corresponding classes SomeDimension.SomeConcern.SomeClass and
SomeOtherDimension.Some-OtherConcern.SomeOtherClass. If the general
strategy was overrideByName, however, this equate relationship would cause the
creation of an override relationship between these two classes; whichever belongs to the
later-occurring hyperslice will override the other.

The equate relationship takes an optional into specification, which indicates the name
that is to be given to the composed entity. The second example above demonstrates this
feature. In this case, four operations—Feature.Kernel.process,
Feature.Check.check_process, Feature.Eval.eval_process, and
Feature.Eval.eval_process are to be equated. If the mergeByName strategy is
used, this equate relationship will produce a composed operation named myProcess,
which will be composed of these four operations. If no name is specified explicitly,
Hyper/J synthesizes a name from the names of the related entities. If a user cares about
the name of the composed entity, he/she should specify it explicitly.

Equate relationships can be applied to any kind of unit, but all equated units must be of
the same kind. The general syntax for equate relationships is:

equateRelationship ::=
 equate unitKind unitName [, unitName]* ;
unitKind ::= class | interface | operation | action | field

The name given to the composed unit is synthesized by Hyper/J from the names of the
input units. It can be changed, if desired, by means of rename (Section 4.2.3.6).

4.2.3.5 Order:

order action SomeDimension.SomeConcern.SomeClass.foo
before action SomeOtherDimension.SomeOtherConcern.SomeOtherClass.foo;

When methods are merged, Hyper/J can, by default, choose to run the code for the
original methods in any order. Sometimes, however, the order is significant. For example,
if one hyperslice provides some core functionality, while another defines some
enhancements to the core functionality, the core hyperslice’s methods should typically be
run before the extension hyperslice’s methods. The order relationship indicates that the
order of related units is significant, and it describes any order constraints. Note that order
relationships define partial orders—they indicate that one method must precede or follow
another, but they need not fully specify the exact order in which to run the methods.
Hyper/J will choose an order that satisfies all order constraints, if one exists (or report an

Copyright © IBM Corporation, 2000 13

error if one does not exist). If an exact order is required, the developer need only specify
enough order relationships to constrain the possible orderings to the one that is desired.

Although order relationships are intended to affect the ordering of composed methods,
they can be applied to hyperslices, classes, interfaces, operations, and actions (but not to
fields). When a hyperslice or class is used in an order relationship, it is simply a
convenient shorthand for all of the methods defined within it. An operation is shorthand for
all methods, in whatever hyperslices or classes, that implement that operation, and an
interface is shorthand for all the operations within it.

The general syntax for order relationships is:

orderRelationship ::=
 order unitKind unitName [, unitName]* (before | after)
 unitKind unitName [, unitName]*;
unitKind ::= hyperslice | class | interface | operation | action

4.2.3.6 Rename:

rename class HypermoduleName.SomeClass to SomeNewName;

The rename relationship is not really a relationship, but rather, a directive to Hyper/J. It
indicates that a specific unit in the composed hyperslice (which is referred to by the name
of the hypermodule) is to be given a new name. In the above example, the composed
software has a class named SomeClass, which the developer has asked to be renamed
to SomeNewName.

Rename directives can be applied to any type of unit, but only to those that occur in the
composed hyperslice. It is not legal to rename units in the input hyperslices with this
directive (and it is not necessary, either).

The general syntax for rename directives is:

renameRelationship ::=
 rename unitKind unitName to newUnitName;
unitKind ::= class | interface | operation | action | field

4.2.3.7 Merge:

merge class SomeDimension.SomeConcern.SomeClass,
 SomeOtherDimension.SomeOtherConcern.SomeOtherClass;

The use of merge causes Hyper/J to create a merge relationship between the set of units
that are specified, whether or not the units matched each other based on the general
composition strategy. It differs from the equate relationship in that equate does not cause
the equated units to be merged; it only indicates that the equated units correspond, with
the relationship that is ultimately created among the equated units depending on the
general composition strategy. The merge relationship causes the named units to be
equated and merged, independent of the general composition strategy. The name given
to the composed unit is the same as for equate .

Merge relationships can be applied to any kind of unit. The general syntax for merge
relationships is:

Copyright © IBM Corporation, 2000 14

mergeRelationship ::=
 merge unitKind unitName [, unitName]* ;
unitKind ::= class | interface | operation | action | field

4.2.3.8 NoMerge:

noMerge class SomeDimension.SomeConcern.SomeClass,
 SomeOtherDimension.SomeOtherConcern.SomeClass;

The noMerge relationship has the opposite effect to the merge (or override) relationship;
it causes two or more units that match each other not to be merged (overridden), even if
the general composition strategy is to merge (override) them. noMerge is typically used in
cases where mergeByName or overrideByName is used as the general composition
strategy, but where some units that match by name are not intended to be merged or
overridden. In the above example, the classes
SomeDimension.SomeConcern.SomeClass and SomeOtherDimension.Some-
OtherConcern.SomeClass match by name, but the developer does not want these
classes to correspond.

noMerge relationships can be applied to any kind of unit. The general syntax for noMerge
relationships is:

noMergeRelationship ::=
 noMerge unitKind unitName [, unitName]* ;
unitKind ::= class | interface | operation | action | field

4.2.3.9 Override:

override action SomeDimension.SomeConcern.SomeClass.foo with
 action SomeOtherDimension.SomeOtherConcern.SomeClass.foo;

The override relationship indicates that one unit overrides one or more other units with
which it corresponds, in the sense described for overrideByName earlier. In the above
example, the method SomeOtherDimension.SomeOtherConcern.SomeClass.foo
overrides SomeDimension.SomeConcern.SomeClass.foo, which means that
anywhere the software refers to either of these methods, only
SomeOtherDimension.SomeOtherConcern.SomeClass.foo will be invoked.

Although override relationships are intended to affect the definition of composed
methods, they can be applied to any kind of unit. When an override relationship is
specified for a unit other than an action, it is simply a convenient shorthand for indicating
that when methods in one unit match those in another unit, the methods defined in the last
unit specified are to override all the corresponding methods defined in the other units, as
described earlier for order.

The general syntax for override relationships is:

overrideRelationship ::=
 override unitKind unitName [, unitName]* with
 unitKind unitName;
unitKind ::= class | interface | operation | action

Copyright © IBM Corporation, 2000 15

4.2.3.10 Match:

match class SomeDimension.SomeConcern.SomeClass with "*";

The match relationship is used to indicate that a given unit should match a set of
units,specified using pattern matching on unit names. For example, the match
specification above indicates that the class
SomeDimension.SomeConcern.SomeClass should match all other classes (“*”).

Like equate, match relationships do not themselves cause the matched units to be
integrated in any way, they just imply correspondence. Instead, the units they cause to be
matched are still subject to the general composition strategy. For example, if
mergeByName is used, then all matched units will be merged; if overrideByName is
used, then one of the matched units will override the others.

Matching only occurs for same-typed units. Thus, for example, classes will only match
classes, and instance variables will only match instance variables.

The syntax for match patterns is illustrated by example below.

"foo" matches only those units named foo
"foo*" matches those units whose names start with foo
"foo*bar" matches units whose names start with foo and end with bar
"~foo*" matches units whose names do not start with foo
"~foo" matches any units except those named foo
"{foo,bar}*" matches any units that start with either foo or bar
"*{foo,bar}" matches units whose names end with either foo or bar
"{f,~foo}*{~r}" matches units whose names start with f but do not start with foo, and
 that do not end with the letter “r”

4.2.3.11 Bracket:

bracket "*"."foo*"
 from action Application.Concern.Class.bar
 before Feature.Logging.LoggedClass.invokeBefore($ClassName),
 after Feature.Logging.LoggedClass.invokeAfter($OperationName);

The bracket relationship indicates that a set of methods should be bracketed—i.e., their
invocation should be preceded and/or followed—by other specified methods. For
example, in the bracket relationship above, all methods whose names begin with “foo” in
any class in the input hyperslices will be bracketed by the methods
Feature.Logging.LoggedClass.invokeBefore and
Feature.Logging.LoggedClass.invokeAfter. Thus, when the composed
software invokes a method called foo(), the call will result first in executing
invokeBefore(), then foo(), then invokeAfter().

A bracket relationship can also optionally include a callsite specification (the from clause
above). A callsite specification is used to restrict the calling context from which the bracket
methods will be invoked. For example, the from clause of the bracket relationship
defined above indicates that the before and after methods should only be invoked when
foo() methods are called from within the method
Application.Concern.Class.bar(). If foo() methods are called from anywhere
else, the before and after methods will not be invoked. Thus, the body of the callsite

Copyright © IBM Corporation, 2000 16

specification identifies the program units where the before and after methods should be
included in a call to the matched method. The callsite specification can reference any kind
of unit. Callsites based on action, operation, and class units apply to the indicated Java
structures. Callsite specifications that use a hyperslice unit can restrict bracketing to
precisely defined software units. The None hyperslice can be used to include all
unspecified software units in a hyperspace dimension.

Bracket relationships require several pieces of information to be specified, as shown
above:

n First, developers must indicate the set of operations in the hypermodule that they
want to be bracketed. These are specified by pattern matching (see the description of
the match relationship in this chapter for details of the match pattern syntax).
Developers may specify either just a pattern for an operation name (e.g., “foo*”), in
which case all operations with that name—irrespective of the class in which they
appear—will be bracketed, or they may specify a pattern for a class name and one for
the operation name, to restrict the set of methods that will be matched (e.g., “C*”.”foo”
would bracket only those foo() methods appearing in classes whose name starts with
C).

n Next, they must indicate the “before” and/or “after” methods that are to bracket the
indicated methods. Note that developers may specify only a “before” method or only
an “after” method, as appropriate for the particular circumstances.

n Finally, developers must specify a class match pattern. If it is “*”, a common case, all
methods matching the operation match pattern (“foo*” in the example) will be
bracketed. Otherwise, only those methods in classes that match the class match
pattern will be bracketed.

In some cases, the bracket methods, like invokeBefore and invokeAfter above,
may require parameters to be specified. If the bracket methods’ parameter types are the
same as those of the methods they bracket, then the same parameter values can be
passed to the bracketed method and the bracket methods. In some cases, however, the
bracket methods may require information about the methods that they are bracketing. At
present, Hyper/J supports two pieces of information about the bracketed method: its
operation name, and its class name. If this information is required by a bracket method, it
can be specified using the (case-insensitive) keywords $OperationName and
$ClassName, respectively, as shown in the example above.

The bracket relationship only applies to operations. The general syntax for bracket
relationships is:

bracketRelationship ::=
 bracket [classMatchPattern .] operationMatchPattern
 [from unitKind unitName [, unitName]*]
 [with]
 [before fullyQualifiedMethodName,]
 [after fullyQualifiedMethodName,]
unitKind ::= hyperslice | class | operation | action

Notes:

Copyright © IBM Corporation, 2000 17

n Current limitations of the bracket relationship are that (a) you can specify only one
from clause per bracket, though it can name several units; (b) you can only indicate
one kind of unit per from clause; and (c) you may only define one bracket
relationship involving any given before and after methods.

n It is an error for a bracket relationship to fail to match any operations.

4.2.3.12 Summary function:

set summary function for action DemoSEE.NumberLiteral.check
 to DemoSEE.Expression.summarizeCheck;

When methods that return values are merged, the composed method must return just one
value. Yet, each of the methods of which it is composed potentially will return a different
value. What value does the composed method return?

By default, Hyper/J will return the value returned by the last of the methods of which it is
composed. This may be appropriate in many cases. In other cases, however, the
composed method should synthesize a return value based on some or all of the values
returned by the methods of which it is composed. In this case, Hyper/J permits the
developer to specify a summary function, which takes as input an array of values that
were returned by sub-methods, and uses them to compute a single return value.

To illustrate summary functions, consider the example above. The check() method in
the composed NumberLiteral class (DemoSEE.NumberLiteral.check) is
composed of the check() methods defined in the Check and StyleChecker features
(Feature.Check.NumberLiteral.check and Feature.StyleChecker.Number-
Literal.check, respectively). Each of these sub-methods returns a boolean value,
which indicates whether or not a given sub-expression is syntactically or stylistically
correct (respectively). The composed method should therefore return true if and only if
both of the check sub-methods return true. If either returns false , then the composed
method should return false .

To achieve this effect, the developer simply writes the following summary function:

static void summarizeCheck (boolean[] returnResults) {
 for (int i = 0;
 i < returnResults.length;
 i++)
 if (!returnResults[i])
 return false;
 // If we reach this point, all returnResults were true.
 return true;
}

(S)he then uses the summary function relationship to attach this method as a summary
function to the appropriate composed check() method(s), as shown above.

Summary functions can be specified for specific methods (actions) or for operations.
When specified for an operation, the summary function will be attached to all composed
methods with the given operation name.

Copyright © IBM Corporation, 2000 18

Hyper/J permits developers to name any external method—i.e., any Java static method,
whether or not it is included in the hyperspace—as a summary method. To name an
external method as a summary method, use the external keyword before the name of the
summary function. For example,

set summary function for action DemoSEE.NumberLiteral.check
 to external mySummaryFunctions.summarize;

In this case, the summary function mySummaryFunctions.summarize need not be in the
hyperspace. If the external keyword is not present, Hyper/J expects to find the summary
function in the hyperspace.

Hyper/J comes with a library of useful summary functions. These are defined in the
package com.ibm.hyeprj.SummaryFunctions (source code is included in the src
directory of the Hyper/J release). If you do not find the summary function you need, you
can write your own.

The syntax of the summary function relationship is as follows:

summaryFunctionRelationship ::=
 set summary function for unitType unitName to summaryFunction;
summaryFunction ::= external unitName
 | unitType unitName
unitType ::= action | operation

4.2.3.13 Notes:

n Summary functions are required to be static methods. They can have any visibility
(public, private, protected, or package).

n Due to a current limitation, summary functions can only be attached to actions, and
not to operations. The same effect can be achieved using just actions, but it may take
more summary function relationship specifications to do so.

n Summary functions, and the actions or operations to which to attach them, must be
defined in the composed hyperslice, and not in the input hyperslices. (Recall that the
composed hyperslice always has the same name as the hypermodule.)

4.2.4. Using the Simplifications

In this section, we have noted several simplifications that Hyper/J offers developers: using
a single control file (Section 4.1.1.4) to specify options to Hyper/J; omitting the hyperspace
specification and allowing Hyper/J to derive it automatically from the concern mappings;
and using the abbreviated integration relationship specification in place of a full
hypermodules specification. To see how a developer might leverage these options to
simplify the use of Hyper/J, consider a common scenario in which a developer has
produced an extension of an existing system. In this case, the developer need only define
two concerns—the existing system and the extension—and one integration relationship
(mergeByName), since (s)he carefully used the same class, method, and instance
variable names in the extension as were present in the existing system. This developer
could write the following control file (which (s)he might name simple.opt), which
employs all of the simplifications:

Copyright © IBM Corporation, 2000 19

-concerns
 package ExistingSystem : Feature.ExistingSoftware
 package Extension : Feature.Extension

-relationships
 mergeByName

The developer could then run Hyper/J with the command

java com.ibm.hyperj.hyperj simple.opt

This is considerably easier and shorter than defining complete hyperspace and
hypermodule specifications. For many development scenarios, these simplifications can
reduce the time developers spend writing Hyper/J control information.

4.2.5. Unparsed Hyperslice Files

At times, it may be somewhat difficult to visualize what the composed software will look
like, based solely on a hypermodule specification. To aid developers in understanding
both what the composed hyperslice actually contains, and to help developers to identify
errors in their composition relationships, Hyper/J can optionally produce unparsed
hyperslice files. Unparsed hyperslice files contain a user-readable representation of
hyperslices. They are created if a developer runs Hyper/J with the command-line options
–verbose or –debug. Unparsed hyperslice files are generated into files whose names
are the name of the corresponding hyperslice, with the suffix “.unp”. One unparsed
hyperslice file is generated for each of the input hyperslices in the hypermodule, and one
is generated for the composed hyperslice (whose name is the same as that of the
hypermodule).

The unparsed hyperslice file is structured as follows:

hyperslice hypersliceName

operations
 list of all composable operations in the hyperslice

interfaces
 alphabetical list of all composable and uncomposable interfaces in
 the hyperslice

classes
 alphabetical list of all composable and uncomposable classes in
 the hyperslice

named types
 Not used in Hyper/J

mapping
 alphabetical list containing all of the composable operations in
 the hyperslice (taken from the composable operations section); for
 each operation, each method that implements the operation in all
 of the composable classes is listed; in other word, the method
 mapping

Copyright © IBM Corporation, 2000 20

We describe the contents of each of these sections below. The examples are drawn from
the expression SEE example described in detail in Section 5; the reader might wish to
defer detailed reading of this section until after reading about, and running, the example.

4.2.5.1 Operations:

The operations section contains a list of all the operations defined in a given hyperslice.
As described earlier, Hyper/J distinguishes operations from methods or actions, in that
methods are specific implementations of operations that are defined within specific
classes. Operations are simply defined by their name and signature. If two different
classes implement methods named foo, which takes no parameters and returns void,
there will be one operation with this name and signature in the operations section. The
mapping section describes how each class in the hyperslice implements a given
operation (if it does).

Operations in the operations section have the form:

setValue
 signature: (Expression newValue) returning void

This example describes an operation named setValue, which takes one parameter
(newValue of class Expression) and returns void..

Notes:

n You may notice operations named <init> or <clinit> in the operations section.
These are the names used in Java class files to represent class constructor methods
and static initializers, respectively.

4.2.5.2 Interfaces:

The interfaces section provides information about all of the interfaces that are part of the
hyperslice, composable or not. For each composable interface that is declared part of the
hyperslice, this section indicates the interface’s name and all of the operations defined
within it. For each uncomposable interface, it indicates just the name of the interface;
details are not gathered or reported by Hyper/J, since they are not needed for interfaces
not involved in composition. For example:

interface Observer[Package: "demo.Observer"]
 inheritance parents:
 GenericObserver[Package: "demo.Observer"]
 operations:
 _acceptNotification(java.lang.Object[]) returning void

UNCOMPOSABLE interface Enumeration[Package: "java.util"]

In this case, an interface named Observer (defined in package demo.Observer) is part
of the hyperslice. This interface is a sub-interface of another interface,
demo.Observer.GenericObserver. It contains one operation, called
_acceptNotification. Notice that the standard Java interface Enumeration is also
defined to be part of this hyperslice, where it is being treated as uncomposable, so the
unparsed hyperslice file does not list any operations for it.

Copyright © IBM Corporation, 2000 21

4.2.5.3 Classes:

The classes section provides information about all of the classes that are part of the
hyperslice, composable or not. For each composable class that is declared part of the
hyperslice, this section indicates the class’s name and all of the instance variables defined
within it. It does not, however, include any operations or static (class) variables that are
defined within the class. The set of operations that each class implements is shown in the
mappings section instead. For historical reasons, the static variables for all classes are
listed separately in the last part of the classes section, under the heading class
variables. For each uncomposable class, the unparsed hyperslice file indicates just the
name of the class. To illustrate:

class UnaryPlus[Package: "demo.ObjectDimension"]
 attributes: public
 default classification:
 UnaryOperator[Package: demo.ObjectDimension"]
 inheritance parents:
 UnaryOperator[Package: "demo.ObjectDimension"]
 instance variables:
 _operand
 type: Expression[Package: "demo.ObjectDimension"]

This indicates that a class named UnaryPlus, which is defined in a Java package called
demo.ObjectDimension, is part of this hyperslice. The statement “attributes: public”
indicates that class UnaryPlus is a public class. The default classification for a class in
Java is always the superclass; in this case, that class is UnaryOperator, which is also
defined in package demo.ObjectDimension. A class will always have exactly one
superclass; this class will also be listed under the inheritance parents heading. Finally,
this example indicates that class UnaryPlus has one instance variable, which is called
_operand, and its type is class Expression (which is also defined in package
demo.ObjectDimension). In this release, the attributes and inheritance parents are
shown for input hyperslices only.

As noted above, the static variables (class variables) for all the classes in a hyperslice are
listed separately in the last part of the classes section, under the heading class
variables. An example of what might appear in the class variables subsection is:

 class variables:
 _count[class: Driver[Package: "demo.ObjectDimension"]]
 type: int
 attributes: private
 _logStream[class: Logger[Package: "demo.Observer"]]
 type: PrintStream[Package: "java.io"]
 attributes: private
 _logger[class: Globals[Package: "demo.Observer"]]
 type: Observer[Package: "demo.Observer"]
 attributes: private

The above example indicates that three classes in this hyperslice define static variables:
class demo.ObjectDimension.Driver, which defines the private int variable _count;
class demo.Observer.Logger, which defines the private static variable named
_logStream of type java.io.PrintStream; and class demo.Observer.Globals,

Copyright © IBM Corporation, 2000 22

which defines the private static variable _logger of type
demo.ObserverWithInterfaces.Observer.

4.2.5.4 Named Types:

This section is not currently used by Hyper/J.

4.2.5.5 Mapping:

As noted earlier, Hyper/J distinguishes between operations, which simply include names
and signatures, and methods or actions, which are specific implementations of operations
for specific classes. The mapping section of an unparsed hyperslice file describes this
mapping from operations and classes to actual implementations (actions). If a given class
does not implement some operation that appears in the operations section, the mapping
section does not include an entry for that <operation, class> pair.

The mapping section is organized by operation, with the operations appearing in
alphabetical order. The following example illustrates the contents of the mapping section
for the operation getOperand, which takes no parameters and returns class
demo.ObjectDimension.Expression. In this case, there are three classes that
implement a getValue method with this signature: classes
demo.ObjectDimension.UnaryMinus, demo.ObjectDimension.UnaryPlus,
and demo.ObjectDimension.UnaryOperator.

getOperand[signature: "() returning Expression[
 Package: "demo.ObjectDimension"]"]
 class UnaryMinus[Package: "demo.ObjectDimension"]

 inherited Compound action
 Label getOperand:
 inherited Simple action getOperand

 class UnaryOperator[Package: "demo.ObjectDimension"]
 Compound action
 Label getOperand:
 Simple action getOperand

 class UnaryPlus[Package: "demo.ObjectDimension"]
 inherited Compound action
 Label getOperand:
 inherited Simple action getOperand

In the above example, the notation inherited Compound action means that classes
UnaryPlus and UnaryMinus inherit their implementations of the getOperand
operation from their superclass (which is UnaryOperator). No other classes in this
hyperspace implement a getOPerand operation with this signature.

The above example came from an input hyperslice. Mappings in composed hyperslices
may be slightly more complex; for example, consider just the UnaryPlus composed
class:

getValue[signature: "() returning Expression"]
 class UnaryPlus

Copyright © IBM Corporation, 2000 23

 CallAction: Sequence Java[return final value]
 Label Feature___Logging._beforeInvoke:
 CallAction: Simple Java[apply operation
Feature___Logging._beforeInvoke(String[Package: "java.lang"],
String[Package: "java.lang"]) returning void]
 Label className:
 Class name accessor
 Label methodName:
 Operation name accessor
 Label Feature___Kernel.getValue:
 CallAction: Simple Java[apply operation
Feature___Kernel.getValue() returning Expression[Package:
"demo.ObjectDimension"]]
 Label Feature___Logging._afterInvoke:
 CallAction: Simple Java[apply operation
Feature___Logging._afterInvoke(String[Package: "java.lang"],
String[Package: "java.lang"]) returning void]
 Label className:
 Class name accessor
 Label methodName:
 Operation name accessor

In this case, the implementation of getValue in class UnaryPlus has the annotation
CallAction: Sequence Java[return final value]. This means that the composed method
comprises multiple input methods. In particular, the above mapping indicates that the
getValue method in the composed UnaryPlus class is composed of the methods
Feature.Logging._beforeInvoke, Feature.Kernel.getValue, and
Feature.Logging._afterInvoke, in that order. (This is the expected result from
using the bracket relationship described earlier in this section.)

Notice the description of _beforeInvoke above:

Label Feature___Logging._beforeInvoke:
 CallAction: Simple Java[apply operation
Feature___Logging._beforeInvoke[(String[Package: "java.lang"],
String[Package: "java.lang"]) returning void]
 Label className:
 Class name accessor
 Label methodName:
 Operation name accessor

In particular, the last four lines, Class name accessor (className) and Operation
name accessor (methodName), indicate that when invoking _beforeInvoke as part of
this composed method, the names of the composed class and method will be passed as
parameters to _beforeInvoke.

Notes:

n For historical reasons, all static methods are shown in the mapping section under
class static, rather than under the actual classes in which they were defined.

Copyright © IBM Corporation, 2000 24

4.3. Designing Using Hyper/J

One of the benefits of Hyper/J is that it permits developers to design their software so that
the structure of the software reflects all of their concerns of interest—i.e., to separate any
concerns of importance from the start. This section provides some information for
developers who are using Hyper/J to keep their concerns separate from the start.

4.3.1. Developing with “Hyperslice Packages”

The code for each concern should be written completely separately from the code that
implements other concerns. To do this in Java™, developers should implement each
concern in its own, separate Java package (or packages). We call such a package a
hyperslice package, because it is deliberately written to encapsulate a concern. It can then
be integrated with other concerns as needed. This adds tremendous flexibility to the code
architectures that developers can select, and to the range of software development
processes they can use, since the classes, interfaces, and members contained within
each hyperslice package can overlap those of other hyperslice packages. Further, the
class structures in different hyperslice packages can differ from one another somewhat,
even if these hyperslice packages are intended to be integrated into a single system. An
example of development with hyperslice packages is given in Section 5.3.1.

While Hyper/J can be used at any stage of the software lifecycle—from early design to
evolution—we strongly encourage developers to use it as early in the lifecycle as possible.
Separating concerns up-front can greatly simplify the initial design of a software system,
which results in greater evolutionary flexibility as well.

Hyperslice packages must be written in standard Java, and they must be compiled
successfully (by any Java compiler) before they can be input to Hyper/J.

4.3.2. Using Declarative Completeness in Hyperslice Packages

As noted above, every hyperslice package must be compilable. Yet any given concern
may expect other concerns to define some of the capabilities on which it depends.
Section 3.5.3 described Hyper/J’s declarative completeness requirement: i.e., within a
hyperslice, every unit to which a given unit refers to must, at minimum, be declared within
that hyperslice. Java imposes the same declarative completeness requirement; thus,
hyperslice packages must be declaratively complete.

When writing hyperslice packages, therefore, it is often necessary to declare methods
whose implementations will occur in some other hyperslice package, to allow standard
Java compilation. We recommend the following strategies for ensuring declarative
completeness:

n If possible, declare the methods as “abstract" in Java. This clearly marks this method
as being one that is required within this hyperslice, but not defined, and which the
hyperslice package developer expected to be provided by another hyperslice.

If you employ this approach, you will also have to declare the class in which the
abstract method appears as “abstract.” This strategy works well and is the simplest
solution, but it can only be used for classes that are not instantiated within the
hyperslice package, since abstract classes cannot be instantiated. (Note that when

Copyright © IBM Corporation, 2000 25

an abstract class, C1, in one hyperslice is composed with a class, C2, in another
hyperslice, where C2 provides implementations for C1’s abstract methods, the
composed class will actually be concrete.)

n If the “abstract” strategy is either not feasible (because the resulting abstract class
must be instantiated within the hyperslice) or not desirable, you may provide a
“dummy” implementation for needed methods, which marks them as required by this
hyperslice package but not defined within it. You should always use the following
“dummy” implementation for any method defined for declarative completeness
purposes:

 throw new com.ibm.hyperj.UnimplementedError();

Hyper/J recognizes this implementation, and it treats any method implemented this
way as an abstract method. When such an “unimplemented” method is composed
with a hyperslice that provides a real implementation, the “dummy” implementation is
discarded, and only the real implementation is used in the composed output. If
methods that are composed together contain only this “dummy” implementation,
Hyper/J will generate the composed method to throw the unimplemented error if it is
invoked.

4.4. Causes of Common Hyper/J Error Messages

Hyper/J attempts to diagnose and report possible causes of errors whenever possible. If
you encounter errors and cannot determine the cause, please send mail to hyperj-
support@watson.ibm.com, and a member of the Hyper/J team will assist you. Please
include in your message the full error message; a team member may ask you for
additional information, based on the particular message.

A few errors occur fairly commonly. We list them, and their likely causes, below.

com.ibm.sop.util.SOPInternalError: SOP internal error: Could not find
java.lang.Object in hyperslice <some hyperslice name>; see dump in <hyperslice
name>_ERROR

OR

com.ibm.sop.hyperspace.HypersliceExtractionError: Error extracting hyperslice:
<some hyperslice name> does not contain any units. The most likely cause is an
erroneous concern mapping, a hyperspace specification that mentions non-
existent classes, or a misset CLASSPATH

Both of these errors indicate that the named hyperslice was defined in such a way as
to have no classes. It is not legal to have empty hyperslices. In general, these errors
occur because the developer did not specify a concern mapping correctly, or because
some class files that the developer intended to include in the hyperspace were not
found. To determine if this is the case, use the –verbose option to Hyper/J and
check the hyperspace dump file (BeforeCompositionHyperspace.dump) and/or the
hyperslice unparse file(s) to find out which classes were actually loaded. Compare
this list with the set of classes you intended to have loaded. If all the classes were
loaded, the problem is that your concern mapping did not map anything to the

Copyright © IBM Corporation, 2000 26

concern corresponding to the named hyperslice. Just add the appropriate mappings.
If classes are missing, do the following:

n Check your hyperspace specification file to be sure you included the missing
classes. If you specified the class files by file name, check the locations. If
you specified the classes by fully qualified Java class name, check the
classes to be sure that they are actually defined in the package you indicated.

n Check your class path to be sure that it includes the directories needed to
find the classes.

n Check the directories from which the missing class files should have been
loaded to ensure that the class files are actually there.

Warning: class <first class name> has no constructor to compose with operation
<operation name> of class <second class name> et al

This message is generally harmless. It indicates that a class named <first class
name> in one hyperslice was matched with <second class name> in a different
hyperslice, and <second class name> has a constructor named <operation name>,
but <first class name> does not have any constructor with compatible parameters.
The default constructor, with no parameters, can be composed with any constructor,
so this message should only occur if a concern mapping has divided a single Java
class into multiple concerns, and the constructors (especially the default constructor)
were associated with other concerns, or in the case of classes with no default
constructors. Unless you depended on having <first class name> ’s constructor
composed with <second class name> ’s constructor, you can safely ignore this
message.

java.lang.NoSuchMethodError

This error typically occurs for users of Sun JDK 1.2 or higher. If it does occur, you
probably need to add the following JDK files to your CLASSPATH (if they are not
already there):

 %JAVA_DIR%\lib\tools.jar
 %JAVA_DIR%\jre\lib\rt.jar
 %JAVA_DIR%\jre\lib\jaws.jar
 %JAVA_DIR%\jre\lib\i18n.jar

4.5. Current Hyper/J Limitations and Known Problems

Hyper/J has several current limitations on the functionality described in this chapter. The
set of currently known limitations and problems is listed below; it is our intention to address
these limitations as soon as possible. If you encounter other limitations that are not listed,
please report them to hyperj-support@watson.ibm.com. When sending the report, please
include a specific example, if possible. Similarly, if you find that the existing functionality is
not sufficient for your needs, please let us know.

n Error reporting may be somewhat inconsistent. If you encounter difficulties in
understanding error messages, please contact hyperj-support@watson.ibm.com for
assistance.

Copyright © IBM Corporation, 2000 27

n The Java predefined classes, like Object and String, cannot currently be
composed, though they can be included in hyperspaces as uncomposable classes.

n The noncorrespondingMerge general composition strategy does not currently work
correctly and has been disabled.

n The merge and override composition relationships currently do not work;
mergeByName and overrideByName do work as general composition strategies
applying to entire hyperslices.

n The noMerge composition relationship works only on operations at present.

n The order relationship only works correctly at present when it is specified for actions.
Developers can achieve the effect of hyperslice-level ordering by listing the
hyperslices in the hyperslices section of the hypermodule specification file in the
order desired.

n Summary functions must be static methods, and they must be defined in the
composed hyperslice.

n Match pattern relationships can only be specified on operations and classes. They do
not work on the special class static, and “*” does not include static.

n The class match pattern in bracket relationships also does not work on the special
class static, and “*” does not include static. Static methods cannot, therefore,
currently be bracketed.

n In hyperspace specifications, the wildcard syntax does not currently cause the loading
of classes in all sub-packages. Developers should specify explicitly the inclusion of
any sub-packages.

n Only one hypermodule can be defined in each hypermodule specification file.

n All classes, interfaces and members in the composed hyperslice are public,
irrespective of the visibility modifiers in the input class files.

n All classes in the composed hyperslice are in a single, top-level package, irrespective
of package structure in the inputs.

 Copyright © IBM Corporation, 2000

Software Development and Evolution using
Hyper/J: An Example

To illustrate the use of Hyper/J and convey a sense of some of the different ways in which
developers can leverage its capabilities throughout the software development lifecycle, we
present here part of the development process of the expression SEE introduced in
Chapter 3. Only small illustrations of code are shown here; the full, runnable code for the
SEE example is included in full in the Hyper/J release, in directory “demo”.

Important note for running the example:

n The class path you will use when running Hyper/J will conflict with the class path you
need to use to run your composed programs. This is because the composed
programs generally contain classes with the same names as the classes you input to
Hyper/J. To avoid problems stemming from using the wrong class path, we
recommend setting up two shell windows: one in which to run Hyper/J, and one in
which to run composed programs. On a Windows system, set up the class paths for
running the demo examples as follows:

Be sure that %HYPERJ_DIR% refers to the Hyper/J installation directory in both the
following Shell Windows, then:

In Shell Window 1 (to run the original example and Hyper/J):
 SET CLASSPATH=%HYPERJ_DIR%;%HYPERJ_DIR%\bin\hyperj.jar;%CLASSPATH%

In Shell Window 2 (to run the composed program produced by Hyper/J):
 SET CLASSPATH=.\DemoSEE;%HYPERJ_DIR%\bin\hyperj.jar;%CLASSPATH%

It is, of course, possible to use explicit –classpath parameters when running Java,
but doing so is less convenient and more error-prone.

5.1. Initial Development, without Hyper/J™

To illustrate incremental adoption of Hyper/J™, we assume that the initial SEE was
developed using standard object-oriented design and implementation techniques, without
Hyper/J™, to produce the design shown in Figure 2. The code is in a single package,
demo.ObjectDimension.

Feature concerns are not identified or encapsulated within this code. The Check, Display
and Evaluation features are all present, in addition to the Kernel. When the example SEE
is executed (do this in Shell Window 1; see the note in the introduction to this section)
with the command

Chapter

5

Copyright © IBM Corporation, 2000 2

java demo.ObjectDimension.Driver

the output includes output from all the features.

The mechanism by which all the features are executed in the example SEE is the
process() method. This method, defined on Expressions, is called by the Driver on each
expression it works with. It is implemented in demo\ObjectDimension\Expression.java as
follows:

1. public void process()
2. {
3. System.out.println ("Beginning expression processing...");
4.
5. // Notice that the order and content are hard-coded here:
6. check_process();
7. eval_process();
8. display_process();
9. }

As noted in the comment, the calls to feature-specific process methods, and their order of
execution, are hard-coded, in lines 6 to 8.

5.2. Mix-and-Match of Features (and Developing Product Lines)

The first change in the requirements entailed permitting the creation of different versions of
the expression SEE, each with different subsets of features. Hyper/J™ can help here in
two ways.

n It provides on-demand remodularization—the ability to identify and encapsulate new
dimensions of concern at any time, without invasive changes. Thus, developers can
introduce the needed feature concerns using Hyper/J™, and then manipulate those
concerns as first-class entities.

n Hyper/J’s composition capability permits the selective integration of concerns, and
hence creation of variants of the expression SEE that integrate different subsets of the
available features, as needed, non-invasively.

To use Hyper/J™ to accomplish this task, a developer performs the steps described in the
following sections.

5.2.1. Create a Hyperspace Specification File

The file demo\ObjectDimension.hs lists all the classes that make up the expression SEE,
thereby specifying all the units to be brought into the hyperspace:

hyperspace DemoHyperspace
 composable class demo.ObjectDimension.*;

This simple file specifies that all classes within the package demo.ObjectDimension
should be included.

Copyright © IBM Corporation, 2000 3

When Hyper/J™ runs, it will automatically create one dimension—the ClassFile
dimension—and one concern in that dimension for each class file it loads. The contents of
those concerns are the units (interfaces, classes, methods, and member variables) in the
corresponding class files.

5.2.2. Create Concern Mappings

To achieve the mix-and-match of features that is desired, the developer must first
encapsulate the features as first-class concerns. S/he does this by creating a new
dimension—the Feature dimension—and describing how existing units in the hyperspace
address concerns in that dimension. To do so, s/he specifies concern mappings in the
concern mapping file demo\ObjectDimension\concerns.cm:

package demo.ObjectDimension : Feature.Kernel
operation check : Feature.Check
operation display : Feature.Display
operation eval : Feature.Eval
operation check_process : Feature.Check
operation display_process : Feature.Display
operation eval_process : Feature.Eval
operation process : Feature.None

The first mapping indicates that, by default, all of the units contained within the Java™
package demo.ObjectDimension address the Kernel concern in the Feature dimension.
Since the Feature dimension does not yet exist when Hyper/J™ processes this first
concern mapping, Hyper/J™ will create it (and the Kernel concern). The next three
mappings indicate that any methods named “display,” “check,” or “eval” address the
Display, Check, or Eval features, respectively. The following three mappings are similar.
These later concern mappings override the first one, whenever they apply. This illustrates
an approach employed throughout Hyper/J™: specification of a general rule followed by
exceptions, to clarify and shorten specifications.

The final concern mapping relates to the Expression.process() method, mentioned earlier:

1. public void process()
2. {
3. System.out.println ("Beginning expression processing...");
4.
5. // Notice that the order and content are hard-coded here:
6. check_process();
7. eval_process();
8. display_process();
9. }

We would like to say that line 6 belongs to the Check feature, line 7 to the Eval feature and
line 8 to the Display feature. Hyper/J currently treats methods as primitive units, however,
which means that it does not support such mapping of individual statements to concerns.
Since we can’t pull this method apart, we need to exclude it entirely to achieve mix-and-
match of features. We’ll see later how to use Hyper/J composition instead to invoke the
features we desire. To exclude this method, we map it to Feature.None, thereby declaring
that it belongs to no feature.

Copyright © IBM Corporation, 2000 4

Once Hyper/J™ has processed these concern mappings, the concern matrix will contain
two dimensions: ClassFile and Feature. Each unit addresses exactly one concern in each
dimension. Thus, for example, the method Expression.display() addresses the concern
demo.ObjectDimension.Expression in the ClassFile dimension, and the Display concern in
the Feature dimension.

5.2.3. Create a Hypermodule Specification File

Once the feature concerns have been identified, the developer can create versions of the
SEE that contain different sets of features by defining hypermodules. For example, the
following hypermodule specification file, demo\CheckDisplay.hm, defines a version of the
SEE that contains the Kernel, Check and Display capabilities only:

hypermodule DemoSEE
 hyperslices:
 Feature.Kernel,
 Feature.Check,
 Feature.Display;
 relationships:
 mergeByName;
 equate operation Feature.Kernel.process,
 Feature.Check.check_process,
 Feature.Display.display_process;
end hypermodule;

In this hypermodule, the Kernel, Check and Display concerns are related by a
“mergeByName” integration relationship. The “ByName” indicates that units in the different
concerns are considered to correspond if they have the same names (and signatures,
where appropriate). The “merge” indicates that corresponding entities are to be combined
so as to include all their details; for example, all members in corresponding classes are
brought together in the composed class.

The second integration relationship, “equate,” accomplishes the special handling of the
process() method. As discussed earlier, we excluded process() from the hypermodule by
relegating it to the Feature.None concern. However, the Driver calls it, within the
Feature.Kernel concern. During declaration completion, to make Feature.Kernel a valid
hyperslice, Hyper/J™ inserts an abstract declaration of process(). In this hypermodule, we
want to specify that that abstract declaration be bound to both check_process() from the
Check feature and display_process() from the Display feature. The “equate” relationship
does just that. It ensures that, when the Driver calls process() at run time in the composed
hyperslice, both check_process() and display_process() will in fact be called.

The hyperslice that results from composing these concerns will contain all the AST
classes, but with just Kernel, Display and Check functionality in each. In particular, no
eval() methods will be present.

5.2.4. Run Hyper/J™

Once the three files described above have been written, it its time to run Hyper/J™. The
current directory can be any directory in which files can be written. Use the following
commands in Shell Window 1 (see the note in the introduction to this section), noting that
the “java” command should be all one line; layout here is for ease of reading:

Copyright © IBM Corporation, 2000 5

java com.ibm.hyperj.hyperj
 -hyperspace %HYPERJ_DIR%/demo/ObjectDimension.hs
 -concerns %HYPERJ_DIR%/demo/ObjectDimension/concerns.cm
 -hypermodules %HYPERJ_DIR%/demo/CheckDisplay.hm
 -verbose

The class path must include the Hyper/J release directory, because that is where the
example “demo” directory is located, and Hyper/J uses the class path to locate all the
class files it reads.

This will produce the “composed hyperslice:” a collection of Java™ class files for the
composed classes, produced by integrating the input hyperslices as specified by the
integration relationships. These files will be in the directory DemoSEE, created (or reused)
within the current directory and named as specified in the hypermodule specification file,
CheckDisplay.hm. The directory will also contain a pseudo-source (.java) file
corresponding to each class file, for use with debuggers; these files are not full Java™ for
the composed classes, however, and cannot be compiled.

The “-verbose” option will cause some messages and a number of files to be produced
that are useful aids to understanding Hyper/J™ and debugging the composition. Most
important are the unparsed hyperslice files for the input hyperslices (the features) and the
composed hyperslice, DemoSEE. The nature of these files was described in Chapter 4.
We recommend that the reader examine them briefly after running this example to get a
concrete feel for them.

5.2.5. Run the Composed Hyperslice

To run the variant of the SEE created above, execute the class files in the composed
hyperslice in Shell Window 2 (see the note in the introduction to this section):

java demo.ObjectDimension.Driver

The current directory, which contains the DemoSEE directory containing the composed
hyperslice, must be on the class path. The original Java™ composable classes need not
be on the class path at all, but any library or other non-composable classes used by the
composable classes must be.

This execution produces output from just the Check and Display features. Comparison
with the output of the original program shows absence of the results produced by the Eval
feature.

The class files in DemoSEE contain standard debugging tables, referring to the generate
pseudo-source (.java) files. The composed hyperslice can therefore also be debugged
with debuggers that uses the standard tables. Details of how to do this depend on the
debugger.

5.2.6. Summary

This part of the SEE evolution scenario has demonstrated the utility of Hyper/J’s on-
demand remodularization and integration capabilities on existing code. Notice that the
feature concerns did not have to be identified or separated during initial development to
permit them to be encapsulated. Also notice that each of the concerns is itself a reusable
component that can be integrated in different contexts with different other concerns—none

Copyright © IBM Corporation, 2000 6

of them is coupled with any other. These properties imply powerful support for
development and configuration of variations within product lines or families.

5.3. The Addition of Style Checking

The expression SEE clients eventually requested an enhancement that permits optional
style checking of expression programs. Hyper/J™ allows the new feature to be developed
separately from the existing features, and non-invasively, without modifying any of the
existing code. The steps are described in the following sections.

5.3.1. Write and Compile a “Hyperslice Package”

To keep the new feature completely separate from the existing code, it should be written
as a new, separate Java™ package (or packages). We call such a package a hyperslice
package, because it is deliberately written to encapsulate a concern. It will then be
integrated with other concerns as needed. This adds tremendous flexibility to the code
architectures that developers can select, and to the range of software development
processes they can use.

Figure 3 depicts the design of the new hyperslice package that realizes the style checking
feature. Notice that the package contains solely the code needed to implement the style
checking feature (plus abstract declarations, not shown, for anything “foreign” that is used,
such as accessor methods from Kernel). Its class structure is similar to that of the original
system (Figure 2), but not identical, because style checking only affects some of the
Expression classes. This is an important feature of multi-dimensional separation of
concerns using Hyper/J™: that different concerns can have different perspectives on, or
views of, the domain model under development. These different views can later be
reconciled by specifying the appropriate relationships between the concerns.

check()

check() check() check()

Literal BinaryOp UnaryOp

Expression

Figure 3. The Style Checking Hyperslice Package

The Java™ code corresponding to Figure 3 is written in directory demo\StyleChecker.
Note that it is absolutely standard Java™. Before it can be integrated by Hyper/J™, it must
be compiled, by any Java™ compiler.

5.3.2. Create a Hyperspace Specification File

A new hyperspace specification file, demo\StyleChecker.hs, is needed, to include both the
original class files and those making up the StyleChecker hyperslice package:

Copyright © IBM Corporation, 2000 7

hyperspace DemoHyperspace
 composable class demo.ObjectDimension.*;
 composable class demo.StyleChecker.*;

5.3.3. Create Additional Concern Mappings

Inclusion of the StyleChecker hyperslice module above automatically specifies new
concerns in the ClassFile dimension, but not in the feature dimension. A simple concern
mapping is needed to create a StyleChecker feature concern, and to map everything in
the StyleChecker hyperslice to it:

package demo.StyleChecker : Feature.StyleChecker

This concern mapping is in file demo\StyleChecker\concerns.cm.

5.3.4. Create a Hypermodule Specification File

With the StyleChecking feature now identified as a concern, the developer can create
variants of the expression SEE that contain style checking or not, as desired, in much the
same way as s/he can mix-and-match the other features, described earlier. For example,
the following hypermodule specification file, demo\CheckDisplayStyle.hm, defines a
version of the SEE that contains the Kernel, Check, Display and StyleChecking
capabilities only:

hypermodule DemoSEE
 hyperslices:
 Feature.Kernel,
 Feature.Check,
 Feature.Display,
 Feature.StyleChecker;
 relationships:
 mergeByName;
 equate operation Feature.Kernel.process,
 Feature.Check.check_process,
 Feature.Display.display_process;
 set summary function for action DemoSEE.BinaryOperator.check
 to action DemoSEE.Expression.summarizeCheck;
end hypermodule;

This hypermodule specification is identical to the one we wrote before, except that we
have added Feature.StyleChecker to the list of hyperslices, and there is an additional “set
summary function” integration relationship at the end. To understand this new relationship,
it is helpful to consider what mergeByName will do now that the StyleChecker hyperslice
has been included. Examination of Figure 3, or of the code implementing it, shows that the
StyleChecker hyperslice provides implementations of check() that perform style checking,
and return boolean values to indicate pass or fail. The integration relationship
“mergeByName” ensures that these check methods are composed with those from the
check() feature, which perform syntax checking. When a check() method is called in the
composed hyperslice, therefore, both these check methods will be executed, to check
both syntax and style. Each one will return a boolean value to indicate pass or fail of its
particular check. What should the overall result be? The best approach in this situation is
probably to declare that an expression passes only if it passes both checks. This effect is
accomplished with a summary function, whose job is to take an array of results produced

Copyright © IBM Corporation, 2000 8

by multiple methods and reduce them to a single result to be returned by the composed
method. In this case, the appropriate summary function was coded as
demo.StykeChecker.Expression.summarizeCheck, which maps to the composed method
DemoSEE.Expression.summarizeCheck. The “set summary function” relationship
specifies that this summary function should be used specifically for checks of
BinaryOperator objects. In truth, it should be used for all check() methods, but the current
release of Hyper/J™ does not permit this to be specified except by listing all the specific
cases, and this is the only case that matters in this particular example. The next release of
Hyper/J™ is expected to support the following integration relationship:

set summary function for operation DemoSEE.check
 to action DemoSEE.Expression.summarizeCheck;

5.3.5. Run Hyper/J™

Once the three files described above have been written, it its time to run Hyper/J™ in
Shell Window 1 (see the note in the introduction to this section), using the commands
(“java” command all one line; layout here is for ease of reading):

java com.ibm.hyperj.hyperj
 -hyperspace %HYPERJ_DIR%/demo/StyleChecker.hs
 -concerns %HYPERJ_DIR%/demo/ObjectDimension/concerns.cm
 %HYPERJ_DIR%/demo/StyleChecker/concerns.cm
 -hypermodules %HYPERJ_DIR%/demo/CheckDisplayStyle.hm
 -verbose

Note that we are using the new hyperspace and hypermodule specifications, and two
concern mapping files. As before, this will produce the composed hyperslice in the
directory DemoSEE, overwriting the prior version of the system (without StyleChecker) we
created there before. To keep both composed hyperslices, use a different hypermodule
name in the hypermodule specification (demo/CheckDisplayStyle.hm).

5.3.6. Run the Composed Hyperslice

To run the variant of the SEE created above, execute the class files in the composed
hyperslice, as before, in Shell Window 2 (see the note in the introduction to this section):

java demo.ObjectDimension.Driver

This execution produces output from the Check, Display and StyleChecker features.
Comparison with the output of the original program shows absence of the results
produced by the Eval feature, and addition of the StyleChecker output. Note that the first
expression is now shown to be invalid, because it failed the style check.

5.3.7. Summary

The addition of style checking has demonstrated an important feature of Hyper/J™. As
shown earlier, developers need not use Hyper/J™ during initial development—they can
use it after development—but if they choose to use it during initial development of some
part of the system, they can achieve separation of concerns, and code architectures, that
would be difficult or impossible to achieve using standard object-oriented techniques. The
extra flexibility does not derive from the use of new languages or paradigms—the style
checker, for example, was written as a standard package in Java™—but, instead, from

Copyright © IBM Corporation, 2000 9

the integration (composition) features of Hyper/J™. It has many important advantages and
uses, including:

n The ability to treat hyperslice packages as reusable components. When hyperslice
packages are used in new contexts, the composition relationships (possibly referring
to special-purpose glue code) can include any adaptation that might be necessary
(white-box reuse).

n The ability to structure code and design along the same lines as requirements,
thereby enhancing traceability, by encapsulating the code that realizes a particular
requirement in one or more hyperslice packages [cla99].

5.4. Retrofitting a Design Pattern for Logging

The final change we will explore is the addition of optional logging (or debug tracing)
throughout the expression SEE. This modification entails making some or all methods in
various classes or features print log messages upon method entry and exit.

Clearly, the logging capability is, conceptually, not specific to the expression SEE—a
generic logging capability would make no reference to any expression classes or
methods, and could be used in multiple contexts. For this scenario, we assume that such
a pre-existing, generic, reusable logging component is available, and can be used to
satisfy the new end-user requirement. This particular reusable component uses an
implementation of the Observer design pattern, along with a particular instantiation of that
pattern to implement logging, as shown in Figure 4.6

...

// Common
// definitions

_register
 (Observer o)
_unregister
 (Observer o)
_notify
 (Object[] params)

Globals Observer Observee

Object

_acceptNotification
 (Object[] params)

Logger

_acceptNotification
 (Object[] params)

_beforeInvoke
 (String className,
 String methodName)
_afterInvoke
 (String className,
 String methodName)

LoggedClass

Figure 4. The Logging Hyperslice Package

6 Other implementations of logging are also possible, of course, and can also be integrated into the expression
SEE using Hyper/J. This implementation was chosen here to demonstrate the retrofitting of design patterns into
code not originally written with them.

Copyright © IBM Corporation, 2000 10

In this case, we will use Hyper/J™ to retrofit the logging capability, which is already
encapsulated in a separate hyperslice package (the reusable component), by integrating it
into the SEE. Hyper/J™ permits us to make this change additively, as described in the
following sections.

5.4.1. Create a Hyperspace Specification File

A new hyperspace specification file, demo\Demo.hs, is needed, to include both the original
class files and those making up the StyleChecker and Logging hyperslice package:

hyperspace DemoHyperspace
 composable class demo.ObjectDimension.*;
 composable class demo.StyleChecker.*;
 composable class demo.Observer.*

5.4.2. Create Additional Concern Mappings

Inclusion of the Observer hyperslice module above automatically specifies new concerns
in the ClassFile dimension, but not in the Feature dimension. A simple concern mapping is
needed to create a Logging feature concern, and to map everything in the Observer
hyperslice to it:

package demo.Observer : Feature.Logging

This concern mapping is in file demo\Observer\concerns.cm.

5.4.3. Create a Hypermodule Specification File

To instrument methods in the existing code, we define a hypermodule to integrate the
Logging feature with any concerns that we want to be logged. For example, the following
hypermodule specification file, demo\Demo.hm, creates a version of the expression SEE
that contains all the features we have discussed, with all these features logged:

hypermodule DemoSEE
 hyperslices:
 Feature.Kernel,
 Feature.Check,
 Feature.Display,
 Feature.Eval,
 Feature.StyleChecker,
 Feature.Logging;
 relationships:
 mergeByName;
 equate operation Feature.Kernel.process,
 Feature.Check.check_process,
 Feature.Display.display_process;
 set summary function for action DemoSEE.BinaryOperator.check
 to action DemoSEE.Expression.summarizeCheck;
 bracket "{~_,~<}*" with
 (before Feature.Logging.LoggedClass._beforeInvoke
 ($ClassName, $OperationName),
 after Feature.Logging.LoggedClass._afterInvoke
 ($ClassName, $OperationName),

Copyright © IBM Corporation, 2000 11

 "*");
end hypermodule;

This hypermodule specification is similar to those we have seen before, except for the
“bracket” relationship. This specifies that Feature.Logging.LoggedClass._beforeInvoke()
and Feature.Logging.LoggedClass._afterInvoke() are to be used as before/after methods,
bracketing other methods as described by the patterns. When they are called, the
parameters to be passed to them are not the parameters of the bracketed method, which
might be unsuitable, but two strings: the name of the class containing the bracketed
method, and the name of the bracketed method itself. The first pattern, "{~_,~<}*",
specifies that all methods whose names do not begin with “_” or “<” are to be bracketed. In
this example, methods beginning with “_” are excluded because they implement the
logging capability itself, and we don’t want to log the operation of the logger. Methods
beginning with “<” are Java™ constructors, and we choose not to log them either in this
example, though doing so is often appropriate. The second pattern, “*”, specifies the
classes to be logged, in this case all classes. Putting this together, _beforeInvoke() and
_afterInvoke() will be called, with the class and operation name parameters, before and
after every method in any class whose name does not begin with “_” or “<”.

5.4.4. Run Hyper/J™

Once the three files described above have been written, it its time to run Hyper/J™, using
Shell Window 1 (see the note in the introduction to this section), with the commands
(“java” command all one line; layout here is for ease of reading):

java com.ibm.hyperj.hyperj
 -hyperspace %HYPERJ_DIR%/demo/Demo.hs
 -concerns %HYPERJ_DIR%/demo/ObjectDimension/concerns.cm
 %HYPERJ_DIR%/demo/StyleChecker/concerns.cm
 %HYPERJ_DIR%/demo/Observer/concerns.cm
 -hypermodules %HYPERJ_DIR%/demo/Demo.hm
 -verbose

Note that we are using the new hyperspace and hypermodule specifications, and three
concern mapping files. As before, this will produce the composed hyperslice in the
directory DemoSEE, overwriting the prior version of the system we created there before.
To keep both composed hyperslices, use a different hypermodule name in the
hypermodule specification (demo/Demo.hm).

5.4.5. Running Hyper/J with One Control File

In Section 4.1.1.4, we noted that it is possible to specify all of the Hyper/J command line
options in a single control file, and to name that file as the first parameter to Hyper/J. This
may be considerably more convenient for developers who are running Hyper/J with the
same parameters repeatedly, as in the demo scenario presented in this chapter.

We can illustrate the use of a single control file for the scenario presented in Section 5.4.4
above. First, make the following control file, called demo.opt, in your working directory:

 -hyperspace %HYPERJ_DIR%/demo/Demo.hs
 -concerns %HYPERJ_DIR%/demo/ObjectDimension/concerns.cm
%HYPERJ_DIR%/demo/StyleChecker/concerns.cm

Copyright © IBM Corporation, 2000 12

%HYPERJ_DIR%/demo/Observer/concerns.cm
 -hypermodules %HYPERJ_DIR%/demo/Demo.hm

Notes:
• -concerns looks like three lines above, but it is really, and must be, a single

line.
• You must expand %HYPERJ_DIR% yourself when making this file; Hyper/J

currently does not do that for you.
• You can use relative path names if you wish.

Then, in Shell Window 1, you may type the following command instead of the one shown
in Section 5.4.4:

java com.ibm.hyperj.hyperj demo.opt –verbose

With this control file, the command to run Hyper/J is clearly much shorter and simpler. In
fact, the –verbose option, which was specified on the command line above, could also
have appeared in the control file. When control files are used, any Hyper/J option can
appear either in the control file or on the command line.

Control files can contain additional information. In the example above, they simply
indicated the names of the files in which the hyperspace, concern mapping, and
hypermodule specifications could be found. It is possible to include any of these
specifications directly in a control file. For example, the following demo.opt for the
example in Section 5.4.4 is included in the demo directory (the blank lines and indentation
are for clarity and are not otherwise significant):

-hyperspace
 hyperspace DemoHyperspace
 composable class demo.ObjectDimension.*;
 composable class demo.StyleChecker.*;
 composable class demo.Observer.*;

-concerns
 package demo.ObjectDimension : Feature.Kernel

 operation check : Feature.Check
 operation display : Feature.Display
 operation eval : Feature.Eval

 operation check_process : Feature.Check
 operation display_process : Feature.Display
 operation eval_process : Feature.Eval

 operation process : Feature.None

 package demo.StyleChecker : Feature.StyleChecker

 package demo.Observer : Feature.Logging

-hypermodules
 hypermodule DemoSEE

Copyright © IBM Corporation, 2000 13

 hyperslices:
 Feature.Kernel,
 Feature.Check,
 Feature.Display,
 Feature.Eval,
 Feature.StyleChecker,
 Feature.Logging;
 relationships:
 mergeByName;

 equate operation Feature.Kernel.process,
 Feature.Check.check_process,
 Feature.Display.display_process,
 Feature.Eval.eval_process;

 bracket "*"."{~_,~<}*"
 before Feature.Logging.LoggedClass._beforeInvoke
 ($ClassName, $OperationName),
 after Feature.Logging.LoggedClass._afterInvoke
 ($ClassName, $OperationName);

 set summary function
 for action DemoSEE.BinaryOperator.check
 to action DemoSEE.Expression.summarizeCheck;

 end hypermodule;

In this case, it would not be necessary to define separate hyperspace, hypermodule, or
concern mapping files; all their contents are directly in this file. The –verbose option,
which was shown above on the command line, could equally well have been specified in
the options file. Developers are free to use separate files or single control files (or any
combination) to best facilitate their particular projects.

To run Hyper/J with this control file, in Shell Window 1, you may type the following
command instead of the one shown in Section 5.4.4:

java com.ibm.hyperj.hyperj %HYPERJ_DIR%/demo/demo.opt –verbose

As described in Section 4.2.1.3, it is possible to omit the hyperspace specification if all
composable classes are within packages named in the concern mapping. That is the case
in this example, so the following shortened control file, demoshort.opt (provided in
the demo directory), can be used:

-concerns
 package demo.ObjectDimension : Feature.Kernel

 operation check : Feature.Check
 operation display : Feature.Display
 operation eval : Feature.Eval

 operation check_process : Feature.Check
 operation display_process : Feature.Display
 operation eval_process : Feature.Eval

Copyright © IBM Corporation, 2000 14

 operation process : Feature.None

 package demo.StyleChecker : Feature.StyleChecker

 package demo.Observer : Feature.Logging

-hypermodules
 hypermodule DemoSEE
 hyperslices:
 Feature.Kernel,
 Feature.Check,
 Feature.Display,
 Feature.Eval,
 Feature.StyleChecker,
 Feature.Logging;
 relationships:
 mergeByName;

 equate operation Feature.Kernel.process,
 Feature.Check.check_process,
 Feature.Display.display_process,
 Feature.Eval.eval_process;

 bracket "*"."{~_,~<}*"
 before Feature.Logging.LoggedClass._beforeInvoke
 ($ClassName, $OperationName),
 after Feature.Logging.LoggedClass._afterInvoke
 ($ClassName, $OperationName);

 set summary function
 for action DemoSEE.BinaryOperator.check
 to action DemoSEE.Expression.summarizeCheck;

 end hypermodule;

Note that we could use the simpler –relationships instead of –hypermodules, but then the
hypermodule would get the default name, Composition. That name would have to be
used instead of DemoSee in the rules, and the composed output of Hyper/J would go in a
directory of that name, affecting the class path for running the composed result.

To run Hyper/J with this control file, in Shell Window 1, you may type the following
command instead of the one shown in Section 5.4.4:

java com.ibm.hyperj.hyperj %HYPERJ_DIR%/demo/demoshort.opt –verbose

5.4.6. Run the Composed Hyperslice

To run the variant of the SEE created above, execute the class files in the composed
hyperslice, as before, in Shell Window 2 (see the note in the introduction to this section):

java demo.ObjectDimension.Driver

Copyright © IBM Corporation, 2000 15

This execution produces output from the Check, Display, Eval and StyleChecker features
to standard output, and the file expression.log containing the Logging feature output.

5.4.7. Summary

This development scenario entailed the integration of generic, reusable components—the
Observer design pattern and logging—into an existing system that had not been designed
to use them. This is a common problem for developers, and it occurs in many forms, at all
stages of software development—for example, integrating a commercial-off-the-shelf
database or library component into software during initial development, or retrofitting a
design pattern or other component into the software during the course of evolution.
Hyper/J™ facilitates a wide range of such integration activities. The same mechanisms
can be used both for integration and customization, as this example shows.

We note that the multi-dimensional approach permits integration and customization using
any concerns, in any dimensions. Thus, for example, while the developers chose to add
logging to a subset of features, they could equally well have decided to add it to a subset
of classes , or to some mix of features and classes. The only difference is in the set of
hyperslices specified in the hypermodule. This ability to treat all concerns as equal
provides developers the ability to focus their attention on precisely the part of a system
that they care about to accomplish their goals.

 Copyright © IBM Corporation, 2000

Bibliography
[all97] R. Allen and D. Garlan. A formal basis for architectural connection. ACM Transactions on Software

Engineering and Methodology, July, 1997.
[and92] E. P. Andersen and T. Reenskaug. System design by composing structures of interacting objects. In O. L.

Madsen, editor, ECOOP '92: European Conference on Object-Oriented Programming, pages 133–152, Utrecht,
June/July 1992. Springer-Verlag. Lecture Notes in Computer Science, no. 615.

[bar96] D. J. Barrett, L. A. Clarke, P. L. Tarr, and A. E. Wise. A Framework for Event-Based Software Integration.
ACM Transactions on Software Engineering and Methodology, 5(4):378–421, October 1996.

[cla99] S. Clarke, W. Harrison, H. Ossher and P. Tarr. Subject-oriented design: Towards improved alignment of
requirements, design and code. In Proceedings of the Conference on Object-Oriented Programming: Systems,
Languages, and Applications, pages 325–339, November, 1999. ACM.

[dso98] D. D'Souza and A. C. Wills . Objects, Components, and Frameworks with UML: The Catalysis Approach.
Addison-Wesley, 1998.

[gam94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

[gos96] James Gosling, Bill Joy and Guy L. Steele. The Java™ Language Specification. Addison-Wesley, 1996.
[har93] W. Harrison and H. Ossher. Subject-oriented programming (a critique of pure objects). In Proceedings of the

Conference on Object-Oriented Programming: Systems, Languages, and Applications, pages 411–428, September
1993. ACM.

[hol92] I. M. Holland. Specifying reusable components using contracts. In O. L. Madsen, editor, ECOOP '92:
European Conference on Object-Oriented Programming, pages 287–308, Utrecht, June/July 1992. Springer-Verlag.
LNCS 615.

[hyp99] Hyperspace web site, http://www.research.ibm.com/hyperspace.
[jac90] M. Jackson. Some complexities in computer-based systems and their implications for system development. In

Proceedings of the International Conference on Computer Systems and Software Engineering, pages 344–351,
1990.

[kel99] R. K. Keller, R. Schauer, S. Robitaille and P. Pagé. Pattern-Based Reverse-Engineering of Design Components.
In Proceedings of the 21st International Conference on Software Engineering (ICSE’99), pages 226–235, May,
1999.

[kic97] G. Kiczales. Aspect-oriented programming. In ECOOP ’97: European Conference on Object-Oriented
Programming, 1997. Invited presentation.

[kim99] Doug Kimelman, Multidimensional tree-structured spaces for separation of concerns in software development
environments. Position paper, OOPSLA ’99 Workshop on Multi-Dimensional Separation of Concerns in Object-
Oriented Systems, http://www.cs.ubc.ca/~murphy/multid-workshop-oopsla99.

[mez98] M. Mezini and K. Lieberherr. Adaptive plug-and-play components for evolutionary software development. In
Proceedings of the Conference on Object-Oriented Programming: Systems, Languages, and Applications, October,
1998.

[nus94] B. Nuseibeh, J. Kramer, and A. Finkelstein. A framework for expressing the relationships between multiple
views in requirements specifications. IEEE Transactions on Software Engineering, 20(10):760–773, October, 1994.

[oss88] H. Ossher. A case study in structure specification: A Grid description of scribe. IEEE Transactions on Software
Engineering, 15(11), 1397–1416, November, 1989.

[oss96] H. Ossher, M. Kaplan, A. Katz, W. Harrison, and V. Kruskal. Specifying subject-oriented composition. Theory
and Practice of Object Systems, 2(3):179–202, 1996.

[oss98] H. Ossher and P. Tarr, Operation-level composition: A case in (join) point. In ECOOP ’98 Workshop Reader ,
pages 406–409, July 1998. Springer Verlag. LNCS 1543.

[par72] D. L. Parnas. On the criteria to be used in decomposing systems into modules. Communications of the ACM,
15(12):1053–1058, December 1972.

[par76] D. L. Parnas, On the Design and Development of Program Families. In IEEE Transactions on Software
Engineering, 2(1), March 1976.

Chapter

6

Copyright © IBM Corporation, 2000 2

[rum98] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Reference Manual. Addison-Wesley,
1998.

[sha96] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline. Prentice Hall, April
1996.

[tar93] P. L. Tarr and L. A. Clarke. PLEIADES: An object management system for software engineering environments.
In Proceedings of the ACM SIGSOFT '93 Symposium on Foundations of Software Engineering, pages 56—70,
December, 1993.

[tar99] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N degrees of separation: Multi-dimensional separation of
concerns. In Proceedings of the 21st International Conference on Software Engineering (ICSE'99), 107–119, May
1999.

[tur98] C. R. Turner, A. Fuggetta, L. Lavazza and A. L. Wolf. Feature Engineering. In Proceedings of the 9th
International Workshop on Software Specification and Design, 162–164, April, 1998.

[van96] M. VanHilst and D. Notkin. Using roles components to implement collaboration-based designs. In Proceedings
of the Conference on Object-Oriented Programming: Systems, Languages, and Applications, pages 359–369,
October 1996. ACM.

[wol89] A. L. Wolf, L. A. Clarke, and J. C. Wileden. The AdaPIC toolset: Supporting interface control and analysis
throughout the software development process. IEEE Transactions on Software Engineering, 15(3):250–263, March
1989.

