
JacORB 2.2 Programming Guide

The JacORB Team

May 7, 2004

Contributors in alphabetical order:

Alphonse Bendt
Gerald Brose
Jason Courage
Nick Cross
Sebastian M̈uller
Nicolas Noffke
Steve Osselton
Simon McQueen
David Robison
André Spiegel

Contents

1 Introduction 9

1.1 A Brief CORBA introduction. 9

1.2 Project History .10

1.3 Support .10

1.4 Contributing — Donations. .11

1.5 Contributing — Development. .11

1.6 Limitations, Feedback. .11

1.6.1 Feedback, Bug reports. 12

2 Installing JacORB 13

2.1 Downloading JacORB. .13

2.2 Installation .13

2.2.1 Requirements. .13

3 Configuration 15

3.1 Properties. .15

3.1.1 Properties files. .15

3.1.2 Command-line properties. 18

3.1.3 Arguments to ORB.init(). 18

3.2 Common Configuration Options. 18

3.2.1 Initial references. .18

3.2.2 Logging. .19

3.3 Configuration Properties. .21

4 Contents

4 Getting Started 29

4.1 JacORB development: an overview. 29

4.2 IDL specifications. .29

4.3 Generating Java classes. .30

4.4 Implementing the interface. .31

4.5 Writing the Server. .33

4.6 Writing a client .34

4.6.1 The Tie Approach .36

5 The JacORB Name Service 39

5.1 Running the Name Server. .39

5.2 Accessing the Name Service. .40

5.3 Constructing Hierarchies of Name Spaces. 41

5.4 NameManager — A simple GUI front-end to the Naming Service. 42

6 The server side: POA, Threads 43

6.1 POA .43

6.2 Threads .44

7 Implementation Repository 45

7.1 Overview .45

7.2 Using the JacORB Implementation Repository. 46

7.3 Server migration .48

7.4 A Note About Security. .49

8 Dynamic Management of Any Values 51

8.1 Overview .51

8.2 Interfaces .51

8.3 Usage Constraints. .52

8.4 Creating a DynAny Object. .52

8.5 Accessing the Value of a DynAny Object. 54

8.6 Traversing the Value of a DynAny Object. 54

Contents 5

8.7 Constructed Types. .56

8.7.1 DynFixed. .56

8.7.2 DynEnum. .56

8.7.3 DynStruct. .56

8.7.4 DynUnion. .56

8.7.5 DynSequence. .57

8.7.6 DynArray. .57

8.8 Converting between Any and DynAny Objects. 57

8.9 Further Examples. .58

9 Objects By Value 59

9.1 Example. .59

9.2 Factories. .61

10 Interface Repository 63

10.1 Type Information in the IR. .63

10.2 Repository Design. .64

10.3 Using the IR. .65

11 The JacORB Appligator 69

11.1 Appligator Functionality .69

11.2 Using The Appligator. .69

11.2.1 Starting Appligator. .69

11.2.2 Client Configuration. .70

11.2.3 Appligator Configuration Appligator. 70

11.3 Applet Support .71

11.3.1 Summary. .71

11.3.2 Applet Properties. .72

11.3.3 Appligator and Netscape/IE, appletviewer. 72

11.3.4 Examples. .72

11.4 Firewall Support .73

11.4.1 Summary. .73

6 Contents

11.4.2 NAT Firewalls .74

11.4.3 Security Considerations. 74

11.4.4 Use of SSH. .74

12 IIOP over SSL 77

12.1 Re–Building JacORB’s security libraries. 77

12.2 IAIK specific setup. .78

12.2.1 Setting up an IAIK key store. 78

12.2.2 Step–By–Step certificate creation. 80

12.3 Configuring SSL properties. .80

12.3.1 Client side configuration. 81

12.3.2 Server side configuration. 82

13 BiDirectional GIOP 83

13.1 Setting up Bidirectional GIOP. 83

13.1.1 Setting the ORBInitializer property. 83

13.1.2 Creating the BiDir Policy. 83

13.2 Verifying that BiDirectional GIOP is used. 84

13.3 TAO interoperability .84

14 Portable Interceptors 87

15 Asynchronous Method Invocation 89

16 Quality of Service 91

16.1 Sync Scope. .92

16.2 Timing Policies. .93

17 Connection Management and Connection Timeouts 99

17.1 Timeouts .99

17.2 Connection Management. .99

17.2.1 Basics and Design. .100

17.2.2 Configuration. .101

Contents 7

17.2.3 Limitations .101

18 Extensible Transport Framework 103

18.1 Implementing a new Transport. .103

18.2 Configuring Transport Usage. .104

19 Security Attribute Service 107

19.1 Overview .107

19.2 GSSUP Example. .108

19.2.1 GSSUP IDL Example. .108

19.2.2 GSSUP Client Example. .108

19.2.3 GSSUP Target Example. .109

19.3 Kerberos Example. .111

19.3.1 Kerberos IDL Example. .111

19.3.2 Kerberos Client Example. .111

19.3.3 Kerberos Target Example. .113

20 The JacORB Notification Service 117

20.1 Installation .117

20.2 Running the Notification Service. .117

20.2.1 Running as a NT Service or a UNIX Daemon.118

20.3 Accessing the Notification Service. .120

20.4 Configuration. .121

21 JacORB utilities 125

21.1 idl .125

21.2 ns .127

21.3 nmg .127

21.4 lsns .128

21.5 dior .128

21.6 pingo .129

21.7 ir .129

8 Contents

21.8 qir .129

21.9 ks .129

21.10fixior. .130

1 Introduction

This document gives an introduction to programming distributed applications with JacORB, a
free Java object request broker. JacORB comes with full source code, a couple of CORBA Object
Service implementations, and a number of example programs. The JacORB version described in
this document is JacORB 2.2.

1.1 A Brief CORBA introduction

The idea behind CORBA is to model distributed resources as objects that provide a well-defined
interface, and to invoke services through remote invocations (RPCs). Since the transfer syntax
for sending messages to objects is strictly defined, it is possible to exchange requests and replies
between processes running program written in arbitrary programming languages and hosted on
arbitrary hardware and operating systems. Target addresses are represented asInteroperable
Object References(IORs), which contain transport addresses as well as identifiers needed to
dispatch incoming messages to implementations.

Interfaces to remote objects are described declaratively in an programming language-
independentInterface Definition Language(IDL), which can be used to automatically generate
language-specific stub code.

It is important to stress that:

• CORBA objects are abstract entities seen by clients and represented by artifacts in poten-
tially arbitrary, even non-OO languages. These artifacts are calledservantsin CORBA
terminology.

• CORBA objects achieve location transparency, i.e., clients need not be (and generally are
not) aware of the actual target hosts where servants reside. However, complete distribution
transparency is not achieved in the sense that clients would not notice a difference between
a local function call and a remote CORBA invocation. This is due to factors such as
increased latency, network error conditions, and CORBA-specific initialization code in
applications, and data type mappings.

Please see [BVD01, Sie00, Vin97] for more information and additional details, and [HV99]
for advanced issues.

10 Introduction

1.2 Project History

JacORB originated in 1995 (was it 1996?) in the CS department at Freie Universität Berlin
(FUB). It evolved from a small Java RPC library and a stub compiler that would process Java in-
terfaces. This predecessor was written — most for fun and out of curiosity — by Boris Bokowski
and Gerald Brose because at that time no Java RMI was available. The two of us then realized
how close the Java interface syntax was to CORBA IDL, so we wrote an IDL grammar for our
parser generator and moved to GIOP and IIOP as the transport protocol. It was shortly before
Christmas 1996 when the first interoperable GIOP request was sent form a JacORB client to an
IONA Orbix server. For a long time, JacORB was the only free (in the GNU sense) Java/CORBA
implementation available, and it soon enjoyed widespread interest, at first mostly in academic
projects, but commercial use followed soon after.

For a while, Gerald developed JacORB as a one-man-project until a few student projects and
master theses started adding to it, most notably Reimo Tiedemann’s POA implementation, and
Nicolas Noffke’s Implementation Repository and Portable Interceptor implementations. Other
early contributors were Sebastian Müller, who wrote the Appligator, and Herbert Kiefer, who
added a policy domain service (which is no longer part of the JacORB distribution).

A more recent addition is Alphonse Bendt’s implementation of the CORBA Notification
Services as part of his master’s theses. Substantial additions to the JacORB core were made by
André Spiegel, who contributed OBV and AMI implementations. Other substantial contributions
to JacORB have been added over time by the team at PrismTech UK (Steve Osselton, Nick Cross,
Simon McQueen, Jason Courage). Still other active contributors are Francisco Reverbel of the
JBoss team (RMI/IIOP), and David Robison, who contributed CSIv2.

JacORB continues to be used for research at FUB, especially in the field of distributed object
security. Even though a number of people from the core team have left FUB (Gerald, Nico,
and Reimo are now with Xtradyne Technologies, André Spiegel is now a free-lance developer
and consultant), the JacORB project is still rooted at Freie Universität Berlin, which hosts the
JacORB web and CVS server.

Due to the limited number of developers, the philosophy around the development has never
been to achieve feature-completeness beyond the core 90%, but standards compliance and qual-
ity. (e.g., JacORB 2.0 does not come with a PolicyManager). Brand-new and less widely-used
features had to wait until the specification had reached a minimum maturity — or until someone
offered project funding.

1.3 Support

The JacORB core team and the user community together provide best effort support over our
mailing lists.

To enquire about commercial support, please send email toinfo@jacorb.com if you

1.4 Contributing — Donations 11

want members of the JacORB core team. Commercial support is also available from PrismTech
and OCI.

1.4 Contributing — Donations

In essence, the early development years were entirely funded by public research. JacORB did
receive some sponsoring over the years, but not as much as would have been desirable. A few
development tasks that would otherwise not have been possible could be payed for, but more
would have been possible — and still is.

If you feel that returning some of the value created by the use of Open Source software
in your company is a wise investment in the future of that the software (maintenance, quality
improvements, further development) in the future, then you should contact us about donations.

Buying hardware and sending it to us is one option. It is also possible to directly donate
money to the JacORB project at Freie Universität Berlin. If approval for outright donations is
difficult to obtain at your company, we can send you an invoice for, e.g.., CORBA consulting.

1.5 Contributing — Development

If you want to contribute to the development of the software directly, you should do the following:

• download JacORB and run the software to gain some first-hand expertise first

• read this document and other sources of CORBA documentation, such as [BVD01], and
the OMG’s set of specifications (CORBA spec., IDL/Java language mapping)

• start reading the code

• subscribe to thejacorb-developer mailing list to share your expertise

• contact us to get subscribed to the core team’s mailing list and gain CVS access

• read the coding guide line

• contribute code and test cases

1.6 Limitations, Feedback

A few limitations and known bugs (list is incomplete):

12 Introduction

• the IDL compiler does not support

– thecontext construct

• the API documentation and this document are incomplete.

1.6.1 Feedback, Bug reports

For bug reporting, please use our Bugzilla bug tracking system available at
http://www.jacorb.org/bugzilla. Please send problems as well as criticism and experience
reports to our developer mailing list available fromhttp://www.jacorb.org/contact.html.

http://www.jacorb.org/bugzilla
http://www.jacorb.org/contact.html

2 Installing JacORB

In this chapter we explain how to obtain and install JacORB, and give an overview of the package
contents.

2.1 Downloading JacORB

JacORB can be downloaded as a g-zipped tar–archive or as a zip–archive from the JacORB home
page athttp://www.jacorb.org.

To install JacORB, first unzip and untar (or simply unzip) the archive somewhere.
This will result in a new directoryJacORB2 2. After this follow the instructions in
JacORB2 2/doc/INSTALL .

2.2 Installation

2.2.1 Requirements

JacORB requires JDK 1.4 or above properly installed on your machine. To build JacORB (and
compile the examples) you need to have the XML–based make tool “Ant” installed on your ma-
chine. Ant can be downloaded fromhttp://jakarta.apache.org/ant. All make files (build.xml)
are written for this tool. To rebuild JacORB completely, just typeant in the installation direc-
tory. Optionally, you might want to do aant clean first.

For SSL, you need an implementation of the SSL protocol. We currently support:

1. IAIK’s 1 implementation consisting of the crypto provider IAIK–JCE 2.5 (or higher) and
the SSL library iSaSiLk 3.0 (or higher). Using this implementation allows you to access
the clients authenticated certificates.

2. Sun’s JSSE Reference implementation included in the JDK 1.4 .

1http://jcewww.iaik.tu-graz.ac.at/

http://www.jacorb.org
http://jakarta.apache.org/ant
http://jcewww.iaik.tu-graz.ac.at

14 Installing JacORB

3 Configuration

This chapter explains the general mechanism for configuring JacORB and lists all configuration
properties. Note that ORB configuration has changed from version 2.1 to 2.2, in particular the
names and locations of the standard configuration files.

If you are upgrading from a previous version, please note that JacORB will still work
with the old files, but you will have to copy your existingjacorb.properties file to
JacORB HOME/etc/jacorb.properties , or rename it toorb.properties if you
want it loaded from your user home directory as before.

3.1 Properties

JacORB has a number of configuration options which can be set as Java properties. There are
three options for setting properties:

• in properties files

• as command line properties, and

• as properties passed as arguments to ORB.init() in the code of your applications.

In the case of a single JVM with multiple ORB instances, it may be required to either share
configuration options between ORBs, or to separate the individual configurations from each
other. We explain how properties can be set for sharing or for individual ORB instances.

3.1.1 Properties files

JacORB looks for a few standard properties files, a common file calledorb.properties , and
an ORB-specific file called<orbid>.properties , where<orbid> is the name of an ORB
instance that was explicitly configured. Moreover, JacORB can load custom properties files from
arbitrary locations. We explain each of these files in turn.

16 Configuration

The common properties file

The reason for having a common properties file is that a single JacORB installation may be
shared by a number of users with a set of common default properties. These may be refined by
users in their own properties files but still provide reasonable defaults for the environment. Note
that it is not required to have a common properties file as all configuration options can also be
set in other files, on the commandline or in the code.

JacORB looks for the common properties fileorb.properties in the following places:

1. in the lib directory of the JDK installation. (The JDK’s home directory denoted by the
system property ”java.home”).

2. in the user home directory. (This is denoted by the system property ”user.home”. On
Windows, this isc:\documents\username , on Unixes it’s̃ user . If in doubt where
your home directory is, write a small Java programm that prints out this property.

3. on the class path.

The common properties file is searched in the order presented above, so you may actually
be loading multiple files of this name. If a properties file is found it is loaded, and any property
values defined in this file will override values of the same property that were loaded earlier.
Loading properties files from the classpath is useful when distributing applications packaged in
JAR files.

The ORB properties file

Having ORB-specific properties files is necessary when multiple ORB instances live in the same
process, but need to have separate configurations, e.g., some ORBs use SSL and others don’t,
or some ORBs need to listen on separate but predefined ports. To let colocated ORBs use and
retrieve separate configurations, JacORB provides a lookup mechanisms based on a specific
property, theORBid property. The default value for the ORBid isjacorb , ie. is the ORBid
is not explicitly set anywhere, it defaults tojacorb . Note that this ORBid is reserved, ie.,
you cannot explicitly set your ORBid to this value. To use different configurations for different
ORBs, you simply pass different ORBid values to your ORBs.

JacORB looks for ORB properties files in these places:

1. jacorb.config.dir/etc/orbid.properties. , if that exists, or

2. jacorb.home/etc/orbid.properties. , or

3. the current directory (’./orbid.properties.’)

4. on the class path.

3.1 Properties 17

The jacorb.config.dir andjacorb.home properties must be set for JacORB to be
able to use a preconfigured configuration directory. Thejacorb.home property defaults to
‘‘.’’ , if unset. Setting these properties can be done in theorb.properties file, or by
passing a property in on the commandline, like this:

$ jaco -Djacorb.config.dir=c:/ -DORBid=example test.Example

This commandline causes JacORB to look for a file calledexample.properties in
c:/etc . If the -DORBid=example had been ommitted, the name of the ORB properties file
that JacORB would try to load would have beenjacorb.properties , because that is the
default value for the ORBid. A good starting point is to have a common properties file that sets
the jacorb.config.dir property, and then have put ajacorb.properties file in that
directory.

Note, however, that the added flexibility of using multiple configuration files may lead to
individual properties defined in multiple files. You must know the order in which your con-
figuration files are loaded to avoid confusion over property settings not having the expected
effect! For this reason, JacORB outputs log messages to the terminal that show the names of
the properties files as they are loaded. This log message always goes to the terminal because the
actual JacORB logging is not yet configured at this stage. It can be suppressed by setting the
jacorb.config.log.verbosity property to a value below 3.

Custom properties files

In addition to the standard JacORB properties files, acustom properties filecan be loaded by
passing the name of that properties files thecustom.props property to JacORB. This can be
handy for application-specific settings that you want to distribute with your code.

The value of this property is the path to a properties file, which contains the properties you
want to load. As an example, imagine that you usually use plain TCP/IP connections, but in
some cases want to use SSL (see section12). The different ways of achieving this are

• Use just one properties file, but you will have to edit that file if you want to switch between
SSL and plaintext connections.

• Use commandline properties exclusively (cf. below), which may lead to very long com-
mands

• Use a command property file for all applications and different custom properties files for
each application.

For example, you could start a JacORB program like this:

$ jaco -Dcustom.props=c:/tmp/ns.props org.jacorb.naming.NameServer

18 Configuration

In addition to loading any standard properties files found in the places listed above, JacORB
will now also load configuration properties from the filec:/tmp/ns.props , but this last file
will be loaded after the default properties files and its values will thus take precedence over
earlier settings.

3.1.2 Command-line properties

In the same way as thecustom.props property in the example above, arbitrary other Java
properties can be passed to JacORB programs using the-D<prop name>=<prop value>
command line syntax for thejava interpreter, but can be used in the same way with thejaco
script. Note that the properties must precede the class name on the command line.

The ORB configuration mechanism will give configuration properties passed in this way
precedence over property values found in configuration files.

3.1.3 Arguments to ORB.init()

For more application–specific properties, you can pass ajava.util.Properties object to
ORB.init() during application initialization. Properties set this way will override properties
set by a properties file. The following code snippet demonstrates how to pass in aProperties
object (args is the String array containing command line arguments):

java.util.Properties props = new java.util.Properties();
props.setProperty("jacorb.implname","StandardNS");
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, props);

3.2 Common Configuration Options

We are now ready to have a look at the most basic JacORB configuration properties. As a starting point,
you should look at the file/etc/jacorb properties.template , which you can adapt to your
own needs.

3.2.1 Initial references

Initial references are object references that are available to CORBA application through the bootstrap
orb.resolve initial service() API call. This call takes a string argument as the name of an
initial reference and returns a CORBA object reference, e.g., to the initial name service.

##
#

3.2 Common Configuration Options 19

Initial references configuration
#
##

#
URLs where IORs are stored (used in orb.resolve_initial_service())
DO EDIT these! (Only those that you are planning to use,
of course ;-).
#
The ORBInitRef references are created on ORB startup time. In the
cases of the services themselves, this may lead to exceptions being
displayed (because the services aren’t up yet). These exceptions
are handled properly and cause no harm!

#ORBInitRef.NameService=corbaloc::160.45.110.41:38693/StandardNS/NameServer-POA/_root
#ORBInitRef.NameService=file:/c:/NS_Ref
ORBInitRef.NameService=http://www.x.y.z/˜user/NS_Ref
#ORBInitRef.TradingService=http://www.x.y.z/˜user/TraderRef

The string value forORBInitRef.NameService is a URL for a resource used to set up
the JacORB name server. This URL will be used by the ORB to locate the file used to store the
name server’s object reference (see also chapter5).

3.2.2 Logging

Beginning with version 2.0, JacORB uses external log kit implementations for writing logs. The
default log kit used by JacORB is the Apache LogKit implementation. To plug in different
loggers, you need to write code for a customLoggerFactory class yourself and supply the
class name as the value of thejacorb.log.loggerFactory property. Any new factory
needs to implement the interfaceorg.jacorb.util.LoggerFactory .

Log levels and different log components

The JacORB logging mechanism can be fine-tuned to set different log levels for different com-
ponents of JacORB. It is still possible to rely only on one single, default log level. This log level
is specified like this (note that the properties have changed from previous JacORB versions!):

##################################
#
Default Logging configuration
#
##################################

Name of the factory class that plugs in a given log kit
The default value is JacORB’s own factory for the Apache

20 Configuration

LogKit. Only edit (or uncomment) if you want a different
log kit.
#jacorb.log.loggerFactory=org.jacorb.util.LogKitLoggerFactory

log levels:
#
0 = fatal errors only = "almost off" (FATAL ERRORS)
1 = non-fatal errors and exceptions (ERROR)
2 = important messages (WARN)
3 = informational messages and exceptions (INFO)
4 = debug-level output (DEBUG) (may confuse the unaware user :-)
jacorb.log.default.verbosity=3

For other components, the individual log levels are set using log properties specific to that
component, e.g.,

jacorb.naming.log.verbosity=0

will turn logging off for the naming service, but all other parts of the ORB will
still use the default log level. The general pattern for the log level property is
jacorb.<component>.log.verbosity . Other components are, e.g., poa, or ssl.

Logging output to a file

The properties specific to file logging are the following:

where does output go? Terminal is default
jacorb.logfile=c:/tmp/jacorb.log

Append to an existing log file or overwrite? (Applies to
file logging only)
jacorb.logfile.append=on

If jacorb.logfile.append is on, set rolling log size in kilobytes.
A value of 0 implies no rolling log
jacorb.logfile.maxLogSize=0

Unless thejacorb.logfile property is set to a file name, output will be sent to the termi-
nal. Thejacorb.logfile.append value tells the logger whether to overwrite existing log
files or to append to the. Thejacorb.logfile.maxLogSize property, finally, determines
how large a log file may become before the logger automatically creates a new file. This value is
in kilobytes. If it is set to 0, log files may become arbitrarily large, no log file rotation is used.

The jacorb.poa.monitoring property determines whether the POA should bring up a
monitoring GUI for servers that let you examine the dynamic behavior of your POA, e.g. how

3.3 Configuration Properties 21

long the request queue gets and whether your thread pool is big enough. Also, this tool lets you
change the state of a POA, e.g. fromactiveto holding. Please see chapter6 on the POA for more
details.

3.3 Configuration Properties

A comprehensive listing and description of the properties which are used to configure JacORB
are given in the following tables.

Table 3.1: ORB Configuration

Property Description Type Default
ORBInitRef.<service> Properties of this form configure initial service

objects which can be resolved via the ORB re-
solve initial references. A variety of URL for-
mats are supported.

URL unset

org.omg.PortableInterc
eptor.ORBInitializerCl
ass.<name>

A portable interceptor initializer class instanti-
ated at ORB creation.

class unset

jacorb.orb.objectKeyMa
p.<name>

Maps an object key to an arbitrary string thereby
enabling better readability for corbaloc URLs.

string

jacorb.giop_minor_vers
ion

The GIOP minor version number to use for newly
created IORs

integer 2

jacorb.retries Number of retries if connection cannot directly
be established

integer 5

jacorb.retry_interval Time in milliseconds to wait between retries millisec. 500
jacorb.maxManagedBufSi
ze

This is NOT the maximum buffer size that can be
used, but just the largest size of buffers that will
be kept and managed. This value will be added to
an internal constant of 5, so the real value in bytes
is 2** (5 + maxManagedBufSize - 1). You only
need to increase this value if you are dealing with
LOTS of LARGE data structures. You may de-
crease it to make the buffer manager release large
buffers immediately rather than keeping them for
later reuse

integer 18

jacorb.bufferManagerFl
ushMax

Whether to use an additional unlimited size
buffer cache for CDROutputStreams. If -1 then
off, if zero then this is feature is enabled, if
greater than zero then it is enabled and flushed
every x seconds

integer -1

22 Configuration

Table 3.1: ORB Configuration

Property Description Type Default

jacorb.connection.clie
nt.pending_reply_timeo
ut

Wait the specified number of msecs for
a reply to a request. If exceeded, a
org.omg.CORBA.TIMEOUT exception will be
thrown. Not set by default

millisec. 0

jacorb.connection.clie
nt.idle_timeout

Client-side timeout. This is set to non-zero in
order to stop blocking after specified number of
milliseconds

millisec. unset

jacorb.connection.clie
nt.timeout_ignores_pen
ding_messages

Controls if client-side idle timeouts take care of
pending messages or not.

boolean

jacorb.connection.clie
nt.retry_on_failure

Controls if network failures on existing connec-
tions should yield a COMMFAILURE or should
trigger a remarshaling of all pending messages.

boolean

jacorb.connection.serv
er.timeout

Maximum time in milliseconds that a server
keeps a connection open if nothing happens

millisec. unset

jacorb.connection.max
_server_transports

This property sets the maximum number of
TCP/IP connections that will be listened on by
the server–side ORB

integer unlimited

jacorb.connection.wait
_for_idle_interval

This property sets the interval to wait until the
next try is made to find an idle connection to
close

millisec 500

jacorb.connection.sele
ction_strategy_class

This property sets theSelectionStrategy class

jacorb.connection.stat
istics_provider_class

This property sets theStatisticsProvider class

jacorb.connection.del
ay_close

This property controls the behaviour after send-
ing a GIOP CloseConnection messsage. If set to
“on”, the TCP/IP connection won’t be closed di-
rectly. Instead, it is waited for the client to do so
first

boolean off

jacorb.transport.facto
ries

This property controls which transport plug-ins
are available to the ORB. The value is a list of
classes that implement the ETFFactories in-
terface.

comma-
separated
list of
classes

jacorb.transport.serve
r.listeners

Controls which transports should be offered by
JacORB on the server side. The value is a list
of numeric profile tags for each transport that
should be available on the server side.

comma-
separated
list of
integers

3.3 Configuration Properties 23

Table 3.1: ORB Configuration

Property Description Type Default
jacorb.transport.clien
t.selector

Name of a class that selects the trans-
port profile to use for communication on
the client side. The value is the fully
qualified name of a class that implements
org.jacorb.orb.ProfileSelector .

class

jacorb.reference_cachi
ng

Whether or not JacORB caches objects refer-
ences

boolean unset

jacorb.hashtable_class The following property specifies the class which
is used for reference caching. WeakHashtable
uses WeakReferences, so entries get garbage col-
lected if only the Hashtable has a reference to
them. This is useful if you have many references
to short-living non-persistent CORBA objects. It
is only available for java 1.2 and above. On the
other hand the standard Hashtable keeps the ref-
erences until they are explicitly deleted by call-
ing release(). This is useful for persistent and
long-living CORBA objects

class Hashtable

jacorb.use_bom Use GIOP 1.2 byte order markers, since CORBA
2.4-5

boolean off

jacorb.giop.add_1_0_pr
ofiles

Add additional IIOP 1.0 profiles even if using
IIOP 1.2

boolean off

jacorb.dns.enable Use DNS names in IORs, rather than numeric IP
addresses

boolean off

jacorb.compactTypecode
s

Whether to send compact typecodes. Options are
0 (off), 1 (Partial compaction), 2 (full compaction
of all optional parameters)

integer 2

jacorb.cacheTypecodes Whether to cache read typecodes boolean off
jacorb.cachePoaNames Whether to cache scoped poa names boolean off
jacorb.interop.indirec
tion_encoding_disable

Turn off indirection encoding for repeated type-
codes. This fixes interoperability with certain
broken ORB’s eg. Orbix 2000

boolean off

jacorb.interop.comet Enable additional buffer length checking and
adjustment for interoperability with Comet
CORBA/COM bridge which can incorrectly en-
code buffer lengths

boolean off

jacorb.interop.lax_
boolean_encoding

Treat any non zero CDR encoded boolean value
as true (strictly should be 1 not non zero)

boolean off

org.omg.PortableInterc
eptor.ORBInitializerCl
ass.bidir_init

This portable interceptor must be configured to
support bi-directional GIOP

class unset

24 Configuration

Table 3.1: ORB Configuration

Property Description Type Default
jacorb.ior_proxy_host The jacorb.iorproxy host and

jacorb.iorproxy port properties inform the
ORB what IP/port IORs should contain, if the
ServerSockets IP/port can’t be used (e.g. for
traffic through a firewall). WARNING: this is
just dumb replacing, so you have to take care of
your configuration!

node unset

jacorb.ior_proxy_port See jacorb.iorproxy host above port unset
OAIAddr The Object Adapter Internet Address: IP address

on multi-homed host (this gets encoded in object
references). NOTE: Addresses like 127.0.0.X
will only be accessible from the same machine!

node unset

OAPort See OAIAddr above port unset
org.omg.PortableInterc
eptor.ORBInitializerCl
ass.standard_init

Standard portable interceptor. DO NOT RE-
MOVE.

class

jacorb.net.socket_fact
ory

Sets or defines the socket factory that must
implement the operations defined in the
org.jacorb.orb.factory.SocketFactory interface.

class

jacorb.net.server_sock
et_factory

Sets or defines the socket factory that must
implement the operations defined in the
org.jacorb.orb.factory.ServerSocketFactory
interface.

class

jacorb.net.socket_fact
ory.port.min

Sets the minimum port number that can be
used for an additional supported socket fac-
tory. This property is used in conjunction with
the jacorb.net.socketfactory.port.max property.
These properties enable the factory to traverse
firewalls through a fixed port range

integer unset
(dis-
abled)

jacorb.net.socket_fact
ory.port.max

Sets the maximum port number that can be used
for the additional supported socket factory. Refer
to jacorb.net.socketfactory.port.min above

integer disabled

Table 3.2: Logging Configuration

Property Description Type Default

jacorb.orb.print_versi
on

If enabled, the ORB’s version number is printed
whenever the ORB is initialized.

boolean on

jacorb.log.logger Name of the logger factory class, can be used class org.jacorb.util

LogFactory to plug in different log implementationas LogKitLoggerFactory

3.3 Configuration Properties 25

Table 3.2: Logging Configuration

Property Description Type Default

jacorb.log.default.
verbosity

Log levels: 0 = fatal errors, 1 = error, 2 = warn-
ing, 3 = info, 4 = debug

integer 0

jacorb.logfile Output destination for diagnostic log file. If not
set, diagnostics are sent to standard error.

filename unset

jacorb.logfile.append Whether to append to existing log file or over-
write (if file logging)

boolean off

jacorb.logfile.maxLogS
ize

If appending to a file sets the size in kilobytes at
which the file is rolled over

integer 0

jacorb.debug.dump_outg
oing_messages

Hex dump outgoing messages boolean off

jacorb.debug.dump_inco
ming_messages

Hex dump incoming messages boolean off

Table 3.3: Name service Configuration

Property Description Type
jacorb.naming.log. The log level for the name
verbosity service. Defaults to jacorb.log.default.verbosity 0-4
jacorb.naming.purge Whether non-active references are purged from name ser-

vice when list operation is invoked. Default is off
on or off

jacorb.naming.noping Whether resolve should return references without trying to
ping them to see if they’re still alive first. Default is ping
(off)

on or off

jacorb.naming. The file where the name server string
ior_filename drops its IOR (default unset)

Table 3.4: POA Configuration

Property Description Type
jacorb.poa.monitoring Displays a GUI monitoring tool for servers. Default is off.boolean
jacorb.poa.thread_pool
_max

Maximum thread pool configuration for request processinginteger

jacorb.poa.thread_pool
_min

Minimum thread pool configuration for request processinginteger

jacorb.poa.thread_prio
rity

If set, request processing threads in the POA will run at
this priority. If not set or invalid, MAXPRIORITY will be
used. Not set by default.

integer

jacorb.poa.queue_wait Specifies whether the POA should block when the request
queue is full (On), or throw TRANSIENT exceptions (Off).
Default is Off.

boolean

26 Configuration

Table 3.4: POA Configuration

Property Description Type
jacorb.poa.queue_max The maximum length of the request queue. If this

length has been reached, and further requests arrive,
jacorb.poa.queuewait specifies what to do. Default is 100.

integer

jacorb.poa.queue_min If jacorb.poa.queuewait is On, and the request queue gets
full, then the POA blocks until the queue contains no more
than queuemin requests. Default is 10.

integer

Table 3.5: Implementation Repository Configuration

Property Description Type
jacorb.use_imr Switch on to contact the Implementation Repository (IR)

on every server start-up. Default is off.
boolean

jacorb.use_imr_endpoin
t

Switch off to prevent writing the IMR address into server
IORs. This property is ignored if jacorb.useimr = off. De-
fault is off.

boolean

jacorb.imr.allow_auto_
register

If set to on servers that don’t already have an entry on their
first call to the IR, will get automatically registered. Oth-
erwise, an UnknownServer exception is thrown. Default is
off.

boolean

jacorb.imr.check_objec
t_liveness

If set on the IR will try to ping every object reference that it
is going to return. If the reference is not alive, then TRAN-
SIENT is thrown. Default is off.

boolean

ORBInitRef.Implementat
ionRepository

The initial reference for the IR. URL

jacorb.imr.table_file File in which the IR stores data. file
jacorb.imr.backup_file Backup data file for the IR. file
jacorb.imr.ior_file File to which the IR writes its IOR. This is usually referred

to by the initial reference for the IR (configured above).
file

jacorb.imr.timeout Time in milliseconds that the implementation will wait for
a started server to register. After this timeout is exceeded
the IR assumes the server has failed to start. Default is
12000 (2 minutes).

millisec.

jacorb.imr.no_of_poas Initial number of POAs that can be registered with the IR.
This is an optimization used to size internal data structures.
This value can be exceeded. Default is 100.

integer

jacorb.imr.no_of_serve
rs

Initial number of servers that can be registered with the IR.
This is an optimization used to size internal data structures.
This value can be exceeded. Default is 5.

integer

jacorb.imr.port_number Starts the IMR on a fixed port (equivalent to the -p option).integer
jacorb.imr.connection_
timeout

Time in milliseconds that the IR waits until a connection
from an application client is terminated. Default is 2000.

millisec.

3.3 Configuration Properties 27

Table 3.5: Implementation Repository Configuration

Property Description Type
jacorb.implname The implementation name for persistent servers. Persistent

servers should set this to a unique name. This is the service
name that is registered in the IR.

name

jacorb.java_exec Command used by the IR to start servers. command

Table 3.6: Security Configuration

Property Description Type
OASSLPort The port number used by SSL, will be dynamically as-

signed by default.
port

org.omg.PortableInterc
eptor.ORBInitializerCl
ass.ForwardInit

Portable interceptor required to support SSL. Not set by
default.

class

jacorb.security.access
_decision

The qualified classname of access decision object. class

jacorb.security.princi
pal_authenticator

A list of qualified classnames of principle authenticator ob-
jects, separated by commas (no whitespaces.). The first
entry (that can be successfully created) will be available
through the principalauthenticator property.

class

jacorb.ssl.socket_fact
ory

The qualified classname of the SSL socket factory class.class

jacorb.ssl.server_sock
et_factory

The qualified classname of the SSL server socket factory
class.

class

jacorb.security.suppor
t_ssl

Whether SSL security is supported. Default is off. boolean

jacorb.security.ssl.cl
ient.supported_options

SSL client supported options - IIOP/SSL parameters (num-
bers are hex values, without the leading 0x): NoProtection
= 1, EstablishTrustInClient = 40, EstablishTrustInTarget =
20, mutual authentication = 60. Default is 0. Please see the
programming guide for more explanation.

integer

jacorb.security.ssl.cl
ient.required_options

SSL client required options (See IIOP/SSL parameters
above). Default is 0.

integer

jacorb.security.ssl.se
rver.supported_options

SSL server supported options (See IIOP/SSL parameters
above). Default is 0.

integer

jacorb.security.ssl.se
rver.required_options

SSL server required options (See IIOP/SSL parameters
above). Default is 0.

integer

jacorb.security.ssl.co
rbaloc_ssliop.supporte
d_options

Used in conjunction with
jacorb.security.ssl.corbalocssliop.requiredoptions. If
these properties are set, then two values will be placed
in the IOR, ”corbaloc:ssliop and ”ssliop. If not set, only
EstablishTrustInTarget is used for both supported and
required options.

integer

28 Configuration

Table 3.6: Security Configuration

Property Description Type
jacorb.security.ssl.co
rbaloc_ssliop.required
_options

Default is 0. integer

jacorb.security.keysto
re

The name and location of the keystore. This may be abso-
lute or relative to the home directory. NOTE (for Sun JSSE
users): The javax.net.ssl.trustStore [Password] properties
doesn’t seem to take effect, so you may want to add trusted
certificates to normal keystores. In this case, please set
the property jacorb.security.jsse. trusteesfrom ks to on, so
trusted certificates are taken from the keystore instead of a
dedicated truststore.

file

jacorb.security.keysto
re_password

The keystore password. string

jacorb.security.truste
es

Files with public key certificates of trusted Certificate
Authorities (CA). WARNING: If no CA certificates are
present, the IAIK chain verifier will accept ALL otherwise
valid chains.

file

jacorb.security.defaul
t_user

The name of the default key alias to look up in the keystore.name

jacorb.security.defaul
t_password

The name of the default key alias to look up in the keystore.string

jacorb.security.iaik_d
ebug

Sets IAIKS SSL classes to print debug output to standard
output. Default is off.

boolean

jacorb.security.jsse.t
rustees_from_ks

Sun JSSE specific settings: Use the keystore to take trusted
certificates from. Default is off.

boolean

jacorb.security.ssl.se
rver.cipher_suites

A comma-separated list of cipher suite names which must
NOT contain whitespaces. See the JSSE documents on
how to obtain the correct cipher suite strings.

string

jacorb.security.ssl.cl
ient.cipher_suites

See jacorb.security.ssl.server.ciphersuites above. string

4 Getting Started

Before we explain an example in detail, we look at the general process of developing CORBA
applications with JacORB. We’ll follow this roadmap when working through the example. The
example can be found indemo/grid which also contains a build file so that the development
steps do not have to be carried out manually every time. Still, you should know what is going on.

As this document gives only a short introduction to JacORB programming and does not cover
all the details of CORBA IDL, we recommend that you also look at the other examples in the
demo/ directory. These are organized so as to show how the different aspects of CORBA IDL
can be used with JacORB.

4.1 JacORB development: an overview

The steps we will generally have to take are:

1. write an IDL specification.

2. compile this specification with the IDL compiler to generate Java classes (Java interfaces,
helper and holder classes, as well as stubs and skeletons).

3. write an implementation for the Java interface generated in step 2

4. write a “Main” class that instantiates the server implementation and registers it with the
ORB

5. write a client class that retrieves a reference to the server object and makes remote invoca-
tions, i.e. CORBA calls.

4.2 IDL specifications

Our example uses a simple server the definition of which should be clear if you know IDL.
Its interface is given inserver.idl . All the source code for this example can be found in
JacORB2 2/demo/grid .

30 Getting Started

// server.idl
// IDL definition of a 2-D grid:
module demo
{

module grid
{

interface MyServer
{

typedef fixed <5,2> fixedT;

readonly attribute short height; // height of the grid
readonly attribute short width; // width of the grid

// set the element [n,m] of the grid, to value:
void set(in short n, in short m, in fixedT value);

// return element [n,m] of the grid:
fixedT get(in short n, in short m);

exception MyException
{

string why;
};

short opWithException() raises(MyException);
};

};
};

4.3 Generating Java classes

Feeding this file into the IDL compiler

$ idl -d ./generated server.idl

produces a number of Java classes that represent the IDL definitions. This is done according
to a set of rules known as the IDL-to-Java language mapping as standardized by the OMG. If
you are interested in the details of the language mapping, i.e. which IDL language construct
is mapped to which Java language construct, please consult the specifications available from
http://www.omg.org . The language mapping used by the JacORB IDL compiler is the one
defined in CORBA 2.3 and is explained in detail in [BVD01]. For practical usage, please consult
the examples in thedemo directory.

The most important Java classes generated by the IDL compiler are the interfaces
MyServer andMyServerOperations , and the stub and skeleton filesMyServerStub,

4.4 Implementing the interface 31

MyServerPOA andMyServerPOATie . We will use these classes in the client and server as
well as in the implementation of the grid’s functionality and explain each in turn.

Note that the IDL compiler will produce a directory structure for the generated code that
corresponds to the module structure in the IDL file, so it would have produced a subdirectory
demo/grid in the current directory had we not directed it to put this directory structure to
./generated by using the compiler’s-d switch. Where to put the source files for generated
classes is a matter of taste. Some people prefer to have everything in one place (as using the-d
option in this way achieves), others like to have one subdirectory for the generated source code
and another for the output of the Java compiler, i.e. for the.class files.

4.4 Implementing the interface

Let’s try to actually provide an implementation of the functionality promised by the interface.
The class which implements that interface is calledgridImpl . Apart from providing a Java
implementation for the operations listed in the IDL interface, it has to inherit from a generated
class that both defines the Java type that represents the IDL typeMyServer and contains the
code needed to receive remote invocations and return results to remote callers. This class is
MyServerPOA .

You might have noticed that this approach is impractical in situations where your implemen-
tation class needs to inherit from other classes. As Java only has single inheritance for imple-
mentations, you would have to use an alternative approach — the “tie”–approach — here. The
tie approach will be explained later.

Here is the Java code for the grid implementation. It uses the Java library class
java.math.BigDecimal for values of the IDL fixed–point typefixedT :

package demo.grid;

/**
* A very simple implementation of a 2-D grid
*/

import demo.grid.MyServerPackage.MyException;

public class gridImpl
extends MyServerPOA

{
protected short height = 31;
protected short width = 14;
protected java.math.BigDecimal[][] mygrid;

public gridImpl()

32 Getting Started

{
mygrid = new java.math.BigDecimal[height][width];
for(short h = 0; h < height; h++)
{

for(short w = 0; w < width; w++)
{

mygrid[h][w] = new java.math.BigDecimal("0.21");
}

}
}

public java.math.BigDecimal get(short n, short m)
{

if((n <= height) && (m <= width))
return mygrid[n][m];

else
return new java.math.BigDecimal("0.01");

}

public short height()
{

return height;
}

public void set(short n, short m, java.math.BigDecimal value)
{

if((n <= height) && (m <= width))
mygrid[n][m] = value;

}

public short width()
{

return width;
}

public short opWithException()
throws demo.grid.MyServerPackage.MyException

{
throw new demo.grid.MyServerPackage.MyException("This is only a test exception, no harm done :-)");

}
}

4.5 Writing the Server 33

4.5 Writing the Server

To actually instantiate agridImpl object which can be accessed remotely as a CORBA object of type
MyServer , you have to instantiate it in a main method of some other class and register it with a compo-
nent of the CORBA architecture known as theObject Adapter. Here is the classServer which does all
that is necessary to activate a CORBA object of typeMyServer from a JavagridImpl object:

package demo.grid;

import java.io.*;
import org.omg.CosNaming.*;

public class Server
{

public static void main(String[] args)
{

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
try
{

org.omg.PortableServer.POA poa =
org.omg.PortableServer.POAHelper.narrow(

orb.resolve_initial_references("RootPOA"));

poa.the_POAManager().activate();

org.omg.CORBA.Object o = poa.servant_to_reference(new gridImpl());

if(args.length == 1)
{

// write the object reference to args[0]

PrintWriter ps = new PrintWriter(
new FileOutputStream(

new File(args[0])));
ps.println(orb.object_to_string(o));
ps.close();

}
else
{

// register with the naming service

NamingContextExt nc =
NamingContextExtHelper.narrow(

orb.resolve_initial_references("NameService"));
nc.bind(nc.to_name("grid.example"), o);

34 Getting Started

}
}
catch (Exception e)
{

e.printStackTrace();
}
orb.run();

}
}

After initializing the ORB we need to obtain a reference to the object adapter — the POA — by asking
the ORB for it. The ORB knows about a few initial references that can be retrieved using simple names
like “RootPOA”. The returned object is an untyped reference of typeCORBA.Object and thus needs
to be narrowed to the correct type using a static methodnarrow() in the helper class for the type in
question. We now have to activate the POA because any POA is created in “holding” state in which it
does not process incoming requests. After callingactivate() on the POA’s POAManager object, the
POA is in an active state and can now be asked to create a CORBA object reference from a Java object
also know as aServant .

In order to make the newly created CORBA object accessible, we have to make its object reference
available. This is done using a publicly accessible directory service, the naming server. A reference to the
naming service is obtained by callingorb.resolve initial references("NameService")
on the ORB and narrowing the reference using thenarrow() method found in class
org.omg.CosNaming.NamingContextExtHelper . Having done this, you should call the
bind() operation on the name server. The name for the object which has to be supplied as
an argument tobind() is not simply a string. Rather, you need to provide a sequence of
CosNaming.NameComponent s that represent the name. In the example, we chose to use an ex-
tended Name Server interface that provides us with a more convenient conversion operation from strings
to Names.

4.6 Writing a client

Finally, let’s have a look at the client class which invokes the server operations:

package demo.grid;

import org.omg.CosNaming.*;

public class Client
{

public static void main(String args[])
{

try
{

4.6 Writing a client 35

MyServer grid;
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);

if(args.length==1)
{

// args[0] is an IOR-string
grid = MyServerHelper.narrow(orb.string_to_object(args[0]));

}
else
{

NamingContextExt nc =
NamingContextExtHelper.narrow(

orb.resolve_initial_references("NameService"));

grid = MyServerHelper.narrow(
nc.resolve(nc.to_name("grid.example")));

}

short x = grid.height();
System.out.println("Height = " + x);

short y = grid.width();
System.out.println("Width = " + y);

x -= 1;
y -= 1;

System.out.println("Old value at (" + x + "," + y +"): " +
grid.get(x,y));

System.out.println("Setting (" + x + "," + y +") to 470.11");

grid.set(x, y, new java.math.BigDecimal("470.11"));

System.out.println("New value at (" + x + "," + y +"): " +
grid.get(x,y));

try
{

grid.opWithException();
}
catch (jacorb.demo.grid.MyServerPackage.MyException ex)
{

System.out.println("MyException, reason: " + ex.why);
}

36 Getting Started

}
catch (Exception e)
{

e.printStackTrace();
}

}
}

After initializing the ORB, the client obtains a reference to the “grid” service by locating the reference
using the name service. Again, resolving the name is done by getting a reference to the naming service by
calling orb.resolve initial references("NameService") and querying the name server
for the"grid" object by callingresolve() . The argument to the resolve operation is, again, a string
that is converted to a Name. The result is an object reference of typeorg.omg.CORBA.Object which
has to be narrowed to the type we are expecting, i.e.MyServer .

After compiling everything we’re now ready to actually run the server and the client on different
(virtual) machines. Make sure the name server is running before starting either the server or the client. If
it isn’t, type something like:

$ ns /home/me/public html/NS Ref

where/home/me/public html/NS Ref is the name of a locally writable file which can be read
by using the URL given in both the remote client and server code. (This is to avoid using a well–known
address for the name server, so both client and server look up the location of the name server via the URL
and later communicate with it directly.)

You can now launch the server:

$ jaco demo.grid.Server

The client can be invoked on any machine you like:

$ jaco demo.grid.Client

Running the client after starting the server produces the following output on your terminal:

Height = 31
Width = 14
Old value at (30,13): 0.21
Setting (30,13) to 470.11
New value at (30,13): 470.11
MyException, reason: This is only a test exception, no harm done :-)
done.

4.6.1 The Tie Approach

If your implementation class cannot inherit from the generated servant classMyServerPOA because,
e.g., you need to inherit from another base class, you can use the tie approach. Put simply, it replaces

4.6 Writing a client 37

inheritance by delegation. Instead of inheriting from the generated base class, your implementation needs
to implement the generatedoperations interfaceMyServerOperations :

package demo.grid;

import demo.grid.MyServerPackage.MyException;

public class gridOperationsImpl
implements MyServerOperations

{
...
}

Your server is then written as follows:

package demo.grid;

import java.io.*;
import org.omg.CosNaming.*;

public class TieServer
{

public static void main(String[] args)
{

org.omg.CORBA.ORB orb =
org.omg.CORBA.ORB.init(args, null);

try
{

org.omg.PortableServer.POA poa =
org.omg.PortableServer.POAHelper.narrow(

orb.resolve_initial_references("RootPOA"));

// use the operations implementation and wrap it in
// a tie object

org.omg.CORBA.Object o =
poa.servant_to_reference(

new MyServerPOATie(new gridOperationsImpl()));

poa.the_POAManager().activate();

if(args.length == 1)
{

// write the object reference to args[0]

38 Getting Started

PrintWriter ps = new PrintWriter(
new FileOutputStream(new File(args[0])));

ps.println(orb.object_to_string(o));
ps.close();

}
else
{

NamingContextExt nc =
NamingContextExtHelper.narrow(

orb.resolve_initial_references("NameService"));
NameComponent [] name = new NameComponent[1];
name[0] = new NameComponent("grid", "whatever");
nc.bind(name, o);

}
}
catch (Exception e)
{

e.printStackTrace();
}
orb.run();

}
}

5 The JacORB Name Service

Name servers are used to locate objects using a human–readable reference (their name) rather than a
machine or network address. If objects providing a certain service are looked up using the service name,
their clients are decoupled from the actual locations of the objects that provide this service. The binding
from name to service can be changed without the clients needing to know.

JacORB provides an implementation of the OMG’s Interoperable Naming Service (INS) which sup-
ports binding names to object references and to lookup object references using these names. It also allows
clients to easily convert names to strings and vice versa. The JacORB name service comprises two com-
ponents: the name server program, and a set of interfaces and classes used to access the service.

One word of caution about using JDK 1.2 with the JacORB naming service: JDK 1.2 comes with a
couple of outdated and apparently buggy naming service classes that do not work properly with JacORB.
To avoid having these classes loaded and used inadvertently, please make sure that you always use the
NamingContextExt interface rather than the plainNamingContext interface in your code. Other-
wise, you will see your application receive null pointer or other exceptions.

5.1 Running the Name Server

The JacORB name server is a process that needs to be started before the name service can be accessed by
programs. Starting the name server is done by typing on the command line either simply

$ ns [<ior filename>][-p port] [-t <timeout>]

You can also start the Java interpreter explicitly by typing

$ jaco jacorb.naming.NameServer [<filename>][-p port] [-t <timeout>]

In the example

$ ns /home/me/public html/NS Ref

we direct the name server process to write location information (its own object reference) to the
file /home/me/public html/NS Ref . A client–side ORB uses this file to locate the name server
process. The client–side ORB does not, however, need to be able to access the file through a local or
shared file system because the file is read as a resource by using a URL pointing to it. This implies that
the name server log file is accessible through a URL in the first place, i.e., that you know of a web server
in your domain which can answer HTTP request to read the file.

The advantage of this approach is that clients do not need to rely on a hard–coded well known port and

40 The JacORB Name Service

that the name server is immediately available world–wide if the URL uses HTTP. If you want to restrict
name server visibility to your domain (assuming that the log file is on a shared file system accessible
throughout your domain) or you do not have access to a web server, you can use file URLs rather than
HTTP URLs, i.e. the URL pointing to your name server log file would looks like

file:/home/brose/public html/NS Ref

rather than

http://www.inf.fu-berlin.de/˜brose/NS_Ref

Specifying file URLs is also useful is clients and servers are run on a single machine that may have no
network connection at all. Please note that the overhead of using HTTP is only incurred once — when the
clients first locate the name server. Subsequent requests will use standard CORBA operation invocations
which means they will be IIOP requests (over TCP). In JacORB 1.4, the file name argument was made
optional because the JacORB 1.4 name server also answers requests that are made using simplified cor-
baloc: URLs of the formcorbaloc::ip-address:port/NameService . This means that all you
need to know to construct an object reference to your name service is the IP address of the machine and
the port number the server process is listening on (the one specified using-p).

The name server stores its internal state, i.e., the name bindings in its context, in files in the current
directory unless the propertyjacorb.naming.db dir is set to a different directory name. This saving
is done when the server goes down regularly, i.e. killing the server with CTRL-C will result in loss of
data. The server will restore state from its files if any files exist and are non–empty.

The second parameter is a port number on which you want the name service to listen for incoming
requests. If this parameter is not set, the name server will come up on the first free port it is provided with
by the operating system. The port number can also be set using specific properties in the properties file,
but the -p switch was added merely for convenience.

The last parameter is a time–out value in msecs. If this value is set, the name server will shut down
after the specified amount of time and save its state. This is useful if the name server is registered with the
Implementation Repository and can thus be restarted on demand.

Configuring a Default Context

Configuring a naming context (i.e. a name server) as the ORB’s default or root context is done by simply
writing the URL that points to this server’s bootstrap file to the properties file.jacorb properties .
Alternatively, you can set this file name in the propertyORBInitRef.NameService either on
the command line or within the application as described in2.2. After the default context has thus
been configured, all operations on the NamingContextExt object that was retrieved by a call to
orb.resolve initial references("NameService") will go to that server — provided it’s
running or can be started using the Implementation Repository.

5.2 Accessing the Name Service

The JacORB name service is accessed using the standard CORBA defined interface:

5.3 Constructing Hierarchies of Name Spaces 41

// get a reference to the naming service
ORB orb = ORB.init(args, null);
org.omg.CORBA.Object o = orb.resolve_initial_references("NameService")
NamingContextExt nc = NamingContextExtHelper.narrow(o);

// look up an object
server s = serverHelper.narrow(nc.resolve(nc.to_name("server.service")));

Before an object can be looked up, you need a reference to the ORB’s name service. The standard way
of obtaining this reference is to callorb.resolve initial references("NameService") .
In calls using the standard, extended name service interface, object names are represented as arrays of
NameComponents rather than as strings in order to allow for structured names. Therefore, you have
to construct such an array and specify that the name’s name is ”server” and that it is of kind “service”
(rather than “context”). Alternatively, you can convert a string “server.service” to a name by calling the
NamingContextExt interface’sto name() operation, as shown above.

Now, we can look up the object by callingresolve() on the naming context, supplying the array
as an argument.

5.3 Constructing Hierarchies of Name Spaces

Like directories in a file system, name spaces or contexts can contain other contexts to allow hierarchical
structuring instead of a simple flat name space. The components of a structured name for an object thus
form a path of names, with the innermost name space directly containing the name binding for the object.
This can very easily be done usingNameManager but can also be explicitly coded.

A new naming context within an enclosing context can be created using eithernew context() or
bind new context() . The following code snippet requests a naming context to create an inner or
subcontext using a given name and return a reference to it:

// get a reference to the naming service
ORB orb = ORB.init();
org.omg.CORBA.Object o =

orb.resolve_initial_references("NameService");
NamingContextExt rootContext =

NamingContextExtHelper.narrow(o);

// look up an object
NameComponent[] name = new NameComponent[1];
name[0] = new NameComponent("sub","context");
NamingContextExt subContext =

NamingContextExtHelper.narrow(rootContext.bind_new_context(name));

Please note that the JacORB naming service always usesNamingContextExt objects internally,
even if the operation signature indicatesNamingContext objects. This is necessary because of the
limitations with JDK 1.2 as explained at the beginning of this section.

42 The JacORB Name Service

5.4 NameManager — A simple GUI front-end to the
Naming Service

The graphical front-end to the name service can be started by calling

$ nmg

The GUI front-end will simply look up the default context and display its contents. Figure5.1gives a
screen shot.

Figure 5.1: NameManager Screenshot

NameManager has menus that let you bind and unbind names, and create or delete naming contexts
within the root context. Creating a nested name space, e.g., can be done by selecting theRootContext
and bringing up a context by clicking the right mouse button. After selecting “new context” from that
menu, you will be prompted to enter a name for the new, nested context.

6 The server side: POA, Threads

This chapter describes the facilities offered by JacORB for controlling how servers are started and exe-
cuted. These include an activation daemon, the Portable Object Adapter (POA), and threading.

This chapter gives only a very superficial introduction to the POA. A thorough explanation of how the
POA can be used in different settings and of the different policies and strategies it offers is beyond our
scope here, but can be found in [BVD01]. Other references that explain the POA are [HV99, Vin98]. More
in–depth treatment in C++ can be found in the various C++-Report Columns on the POA by Doug Schmidt
and Steve Vinoski. These articles are available athttp://www.cs.wustl.edu/ schmidt/report-doc.html. The
ultimate reference, of course, is the CORBA specification.

6.1 POA

The POA provides a comprehensive set of interfaces for managing object references and servants. The
code written using the POA interfaces is now portable across ORB implementations and has the same
semantics in every ORB that is compliant to CORBA 2.2 or above.

The POA defines standard interfaces to do the following:

• Map an object reference to a servant that implements that object

• Allow transparent activation of objects

• Associate policy information with objects

• Make a CORBA object persistent over several server process lifetimes

In the POA specification, the use of pseudo-IDL has been deprecated in favor of an approach that
uses ordinary IDL, which is mapped into programming languages using the standard language mappings,
but which is locality constrained. This means that references to objects of these types may not be passed
outside of a server’s address space. The POA interface itself is one example of a locality–constrained
interface.

The object adapter is that part of CORBA that is responsible for creating CORBA objects and object
references and — with a little help from skeletons — dispatching operation requests to actual object
implementations. In cooperation with the Implementation Repository it can also activate objects, i.e. start
processes with programs that provide implementations for CORBA objects.

http://www.cs.wustl.edu/~schmidt/report-doc.html

44 The server side: POA, Threads

6.2 Threads

JacORB currently offers one server–side thread model. The POA responsible for a given request
will obtain a request processor thread from a central thread pool. The pool has a certain size
which is always between the maximum and minimum value configure by setting the properties
jacorb.poa.thread pool max andjacorb.poa.thread pool min .

When a request arrives and the pool is found to contain no threads because all exist-
ing threads are active, new threads may be started until the total number of threads reaches
jacorb.poa.thread pool max. Otherwise, request processing is blocked until a thread is returned
to the pool. Upon returning threads that have finished processing a request to the pool, it must be decided
whether the thread should actually remain in the pool or be destroyed. If the current pool size is above
the minimum, a processor thread will not be out into the pool again. Thus, the pool size always oscillates
between max and min.

Settingmin to a value greater than one means keeping a certain number of threads ready to service
incoming requests without delay. This is especially useful if you now that requests are likely to come in in
a bursty fashion. Limiting the pool size to a certain maximum is done to prevent servers from occupying
all available resources.

Request processor threads usually run at the highest thread priority. It is possible to influence
thread priorities by setting the propertyjacorb.poa.thread priority to a value between Java’s
Thread.MINPRIORITY and Thread.MAXPRIORITY. If the configured priority value is invalid JacORB
will assign maximum priority to request processing threads.

7 Implementation Repository

“... it is very easy to be blinded to the essential uselessness of them by the sense of achieve-
ment you get from getting it to work at all. In other words — and that is a rock-solid
principle on which the whole of the Corporation’s Galaxywide success is founded — their
fundamental design flaws are completely hidden by their superficial design flaws.”

D. Adams: So Long and Thanks for all the Fish

The Implementation Repository is not, as its name suggests, a database of implementations. Rather,
it contains information about where requests to specific CORBA objects have to be redirected and how
implementations can be transparently instantiated if, for a given request to an object, none is reachable.
“Instantiating an implementation” means starting a server program that hosts the target object. In this
chapter we give a brief overview and a short introduction on how to use the Implementation Repository.
For more details please see [HV99].

7.1 Overview

Basically, the Implementation Repository (ImR) is an indirection for requests using persistent object ref-
erences. A persistent object reference is one that was created by a POA with a PERSISTENT lifespan
policy. This means that the lifetime of the object is longer than that of its creating POA. Using the Im-
plementation Repository for objects the lifetime of which does not exceed the life time of its POA does
not make sense as the main function of the Implementation Repository is to take care that such a process
exists when requests are made — and to start one if necessary.

To fulfill this function, the ImR has to be involved in every request to “persistent objects”. This is
achieved by rewriting persistent object references to containnot the address of its server process but the
address of the ImR. Thus, requests will initially reach the ImR and not the actual server — which may not
exist at the time of the request. If such a request arrives at the ImR, it looks up the server information in its
internal tables to determine if the target object is reachable or not. In the latter case, the ImR has to have
information about how an appropriate server process can be started. After starting this server, the client
receives a LOCATIONFORWARD exception from the ImR. This exception, which contains a new object
reference to the actual server process now, is handled by its runtime system transparently. As a result, the
client will automatically reissue its request using the new reference, now addressing the target directly.

46 Implementation Repository

7.2 Using the JacORB Implementation Repository

The JacORB Implementation Repository consists of two separate components: a repository process which
need only exist once in a domain, and process startup daemons, which must be present on every host that
is to start processes. Note that none of this machinery is necessary for processes that host objects with a
TRANSIENT life time, such as used by the RootPOA.

First of all, the central repository process (which we will call ImR in the following) must be started:

$ imr [-n] [-p <port>] [-i <ior file>][-f <file>][-b <file>] [-a]

The ImR is located using the configuration propertyORBInitRef.ImplementationRepository .
This property must be set such that a http connection can be made and the ImR’s IOR can be read. Next,
startup daemons must be created on selected hosts. To do this, the following command must is issued on
each host:

$ imr ssd

When a startup daemon is created, it contacts the central ImR.

To register a program such that the ImR can start it, the following command is used (on any machine
that can reach the ImR):

$ imr mg add "AServerName" -c "jaco MyServer"

The imr mg command is the generic way of telling the ImR to do something. It needs another
command parameter, such asadd in this case. To add a server to the ImR, animplementation nameis
needed. Here, it is"AServerName" . If the host were the server should be restarted is not the local one,
use the-h hostname option. Finally, the ImR needs to know how to start the server. The string"jaco
MyServer" tells it how. The format of this string is simply such that the server daemon can execute it
(using the Java API callexec()), i.e. it must be intelligible to the target host’s operating system. For
a Windows machine, this could, e.g. be"start jaco MyServer" to have the server run in its own
terminal window, under Unix the same can be achieved with"xterm -e jaco MyServer" .

The startup command is a string that is passed as thesingleargument to javasRuntime.exec()
method, without interpreting it or adding anything. SinceRuntime.exec() has system–dependent
behaviour, the startup string has to reflect that. While for most unix systems it is sufficient to avoid shell–
expansions like * and̃ , windows–based systems do not pass the string to a commandline interpreter so a
simplejaco MyServer will fail even if it works if directly typed in at the dos prompt. Therefore you
have to “wrap” the core startup command in a call to a commandline interpreter. On NT the following
startup command will do the job:cmd /c "jaco MyServer" . Please keep in mind that if you use
the imr mgcommand to set the startup command, you have to escape the quotes so they appear inside of
the resulting string.

If you don’t intend to have your server automatically started by the ImR you can also set the property
“ jacorb.imr.allow auto register ” or use the-a switch of the ImR process. If this property
is set, the ImR will automatically create a new entry for a server on POA activation, if the server has not
been registered previously. In this case you don’t have to use the ImR Manager to register your server.

For a client program to be able to issue requests, it needs an object reference. Up to this point, we
haven’t said anything about how persistent object references come into existence. Reference creation

7.2 Using the JacORB Implementation Repository 47

happens as usual, i.e. in the server application one of the respective operations on a POA is called. For
a reference to be created as “persistent”, the POA must have been created with a PERSISTENT lifespan
policy. This is done as in the following code snippet:

/* init ORB and root POA */
orb = org.omg.CORBA.ORB.init(args, props);
org.omg.PortableServer.POA rootPOA =

org.omg.PortableServer.POAHelper.narrow(
orb.resolve_initial_references("RootPOA"));

/* create policies */

org.omg.CORBA.Policy [] policies = new org.omg.CORBA.Policy[2];
policies[0] = rootPOA.create_id_assignment_policy(

IdAssignmentPolicyValue.USER_ID);
policies[1] = rootPOA.create_lifespan_policy(

LifespanPolicyValue.PERSISTENT);

/* create POA */

POA myPOA = rootPOA.create_POA("XYZPOA",
rootPOA.the_POAManager(), policies);

/* activate POAs */
poa.the_POAManager().activate();

(Note that in general the id assignment policy will beUSERID for a POA with persistent object
references because this id will often be a key into a database where the object state is stored). If a POA
is created with this lifespan policy and the ORB property “useimr” is set, the ORB will try to notify
the ImR about this fact so the ImR knows it doesn’t need to start a new process for requests that target
objects on this POA. To set the ORB policy, simply set the propertyjacorb.use imr=on . The ORB
uses another property,jacorb.implname , as a parameter for the notification, i.e. it tells the ImR that
a process using this property’s value as itsimplementation nameis present. If the server is registered with
the ImR, this property value has to match the implementation name that is used when registering.

The application can set these properties on the command line usingjava
-Djacorb.implname=MyName , or in the code like this:

/* create and set properties */
java.util.Properties props = new java.util.Properties();
props.setProperty("jacorb.use_imr","on");
props.setProperty("jacorb.implname","MyName");

/* init ORB */
orb = org.omg.CORBA.ORB.init(args, props);

48 Implementation Repository

There are a few things you have to consider especially when restoring object state at startup time or
saving the state of your objects on shutdown. It is important that, at startup time, object initialization
is complete when the object is activated because from this instant on operation calls may come in. The
repository knows about the server when the first POA with a PERSISTENT lifespan policy registers, but
does not forward object references to clients before the object is actually reachable. (Another, unreliable
way to handle this problem is to increase thejacorb.imr.object activation sleep property,
so the repository waits longer for the object to become ready again.)

When the server shuts down, it is equally important that object state is saved by the time the last POA
in the server goes down because from this moment the Implementation Repository regards the server as
down and will start a new one upon requests. Thus, a server implementor is responsible for avoiding
reader/writer problems between servers trying to store and restore the object state. (One way of doing this
is to use POA managers to set a POA to holding while saving state and to inactive when done.)

Please keep in mind that even if you don’t have to save the state of your objects on server shutdown
you mustdeactivate your POAs prior to exiting your process (or at least useorb.shutdown(...)
which includes POA deactivation). Otherwise the ImR keeps the server as active and will return invalid
IORs. In case of a server crash you can either notify the ImR manually by using the commandimr mg
setdown AServerName or allow the ImR to detect the crashed server and restart it if necessary.

7.3 Server migration

The implementation repository offers another useful possibility: server migration. Imagine the following
scenario: You have written your server with persistent POAs, but after a certain time your machine seems
to be too slow to serve all those incoming requests. Migrating your server to a more powerful machine
is the obvious solution. Using the implementation repository, client references do not contain addressing
information for the slow machine, so server migration can be done transparently to client.

Assuming that you added your server to the repository, and it is running correctly.

$ imr mg add AServerName -h a slow machine -c "jaco MyServer"

The first step is tohold the server, that means the repository delays all requests for that server until it
is released again.

$ imr mg hold AServerName

Now your server will not receive any requests for its registered POAs. If you can’t shut your server
down such that it sets itself down at the repository, i.e. your POAs are set to inactive prior to terminating
the process, you can use

$ imr mg setdown AServerName

to do that. Otherwise your POAs can’t be reactivated at the repository because they are still logged as
active.

If you want your server to be restarted automatically, you have to tell the repository the new host and
maybe a new startup command.

$ imr mg edit AServerName -h the fastest available machine

7.4 A Note About Security 49

-c "jaco MyServer"

If your server can be restarted automatically, you now don’t even have to start it manually, but it is
instead restarted by the next incoming request. Otherwise start it manually on the desired machine now.

The last step is to release the server, i.e. let all delayed requests continue.

$ imr mg release AServerName

By now your server should be running on another machine, without the clients noticing.

7.4 A Note About Security

Using the imr can pose a major security threat to your system. Imagine the following standard setup: an
imr is running on a machine, its IOR file is placed in a directory where it can be read by the web server, and
several imrssds are running on other machines. An attacker can now execute processes on the machines
the ssds are running on by taking the following steps:

1. Setting theORBInitRef.ImplementationRepository property to the IOR file on your
server.

2. Creating a new logical server with the desired command to execute as startup command on the
desired host (where a ssd is running). This is the crucial point. The ssd callsRuntime.exec()
with the supplied string, and there is no way to check if the command does what it is supposed to
do, i.e. start a server.

3. Start the server with the imrmg. The startup command of the server will be exec’d on the specified
host.

Now this should not generally discourage you to use the imr but show you that there are risks, which
can be reduced significantly nonetheless. There are several ways to encounter this threat and we don’t
consider this list to be complete:

1. Try to control the distribution of the IOR file. Hiding it should not be considered here, because
security by obscurityis generally a bad approach. Try to make use of file system mechanisms like
groups and ACLs.

2. Use a firewall which blocks of incoming traffic. Keep in mind that if the attacker is inside of your
protection domain, the firewall won’t help. It is also not that hard to write a Trojan that can tunnel
those firewalls that block incoming traffic.

3. Enforce SSL connections to the imr. This blocks all client connections that don’t have a certificate
signed by a CA of your choice. See chapter12 for more information.

50 Implementation Repository

8 Dynamic Management of Any Values

by Jason Courage

The purpose of this chapter is to describe the DynAny specification, which is the specification for
the dynamic management of Any values. This chapter only describes the main features of the DynAny
specification; for the complete specification consult the appropriate chapter of the CORBA specification
available from the OMG.

8.1 Overview

DynAny objects are used to dynamically construct and traverse Any values. A DynAny can represent a
value of a basic type, such as boolean or long, or a constructed type, such as enum or struct.

8.2 Interfaces

The UML diagram below shows the relationship between the interfaces in the org.omg.DynamicAny
module.

DynAny

DynFixed DynEnum DynStruct DynUnion DynSequence DynArray DynValueCommon

DynValue DynValueBox

Figure 8.1: DynAny Relationships

52 Dynamic Management of Any Values

The DynAny interface is the base interface that represents values of the basic types. For each con-
structed type there is a corresponding interface that extends the DynAny interface and defines operations
specific to the constructed type. The table below lists the interfaces in the DynamicAny module and the
types they represent.

Interface Type
DynAny basic types (boolean, long, etc.)
DynFixed fixed
DynEnum enum
DynStruct struct
DynUnion union
DynSequence sequence
DynArray array
DynValue* non-boxed valuetype
DynValueBox* boxed valuetype

* Not currently implemented by JacORB.

8.3 Usage Constraints

Objects that implement interfaces in the DynamicAny module are intended to be local to the process that
constructs and uses them. As a result, references to these objects cannot be exported to other processes or
externalized using ORB::objectto string; an operation that attempts to do so will throw the MARSHAL
system exception.

8.4 Creating a DynAny Object

The DynAnyFactory interface is used to create a DynAny object. There are two operations for creating a
DynAny object; these are listed in the table below.

Operation Description
create_dyn_any Constructs a DynAny object from an Any

value
create_dyn_any_from_ty
pe_code

Constructs a DynAny object from a
TypeCode

The example below illustrates how to obtain a reference to the DynAnyFacory object and then use it to
construct a DynAny object with each of the create operations. Exception handling is omitted for brevity.

The following line of code imports the classes in the DynamicAny package.

import org.omg.DynamicAny.*;

8.4 Creating a DynAny Object 53

The following code segment obtains a reference to the DynAnyFacory object.

DynAnyFactory factory = null;
DynAny DynAny = null;
DynAny DynAny2 = null;
org.omg.CORBA.Any any = null;
org.omg.CORBA.TypeCode tc = null;
org.omg.CORBA.Object obj = null;

// obtain a reference to the DynAnyFactory
obj = orb.resolve_initial_references ("DynAnyFactory");

// narrow the reference to the correct type
factory = DynAnyFactoryHelper.narrow (obj);

The following code segment creates a DynAny with each of the create operations.

// create a DynAny object from an Any
any = orb.create_any ();
any.insert_long (1);
DynAny = factory.create_dyn_any (any);

// create a DynAny object from a TypeCode
tc = orb.get_primitive_tc (org.omg.CORBA.TCKind.tk_long);
DynAny2 = factory.create_dyn_any_from_type_code (tc);

If the Any value or TypeCode represents a constructed type then the DynAny can be narrowed to the
appropriate subtype, as illustrated below.

The following IDL defines a struct type.

// example struct type
struct StructType
{

long field1;
string field2;

};

The following code segment illustrates the creation of a DynStruct object that represents a value of
type StructType.

54 Dynamic Management of Any Values

StructType type = null;
DynStruct dynStruct = null;

// create an Any that contains an object of type StructType
type = new StructType (999, "Hello");
any = orb.create_any ();
StructTypeHelper.insert (any, type);

// construct a DynAny from an Any and narrow it to a DynStruct
dynStruct = (DynStruct) factory.create_dyn_any (any);

8.5 Accessing the Value of a DynAny Object

The DynAny interface defines a set of operations for accessing the value of a basic type represented
by a DynAny object. The operation to get a value of basic type<type> from a DynAny has the form
get <type>. The operation to insert a value of basic type<type> into a DynAny has the form in-
sert<type>. A TypeMismatch exception is thrown if the type of the operation used to get/insert a value
into a DynAny object does not match the type of the DynAny.

The operations for accessing the value of a constructed type represented by a DynAny are defined in
the interface specific to the constructed type. For example, the DynStruct interface defines the operation
get members, which returns a sequence of name/value pairs representing the members of the struct or
exception represented by a DynStruct object.

8.6 Traversing the Value of a DynAny Object

DynAny objects can be viewed as an ordered collection of component DynAnys. For example, in a Dyn-
Struct object the ordered collection of component DynAnys is the members of the struct or exception it
represents. For DynAny objects representing basic types or constructed types that do not have compo-
nents, the collection of component DynAnys is empty.

All DynAny objects have a current position. For DynAnys representing constructed types that have
components, the current position is the index of the component DynAny that would be obtained by a call
to the currentcomponent operation (described in the table below). The component DynAnys of a DynAny
object are indexed from 0 to n-1, where n is the number of components. For DynAnys representing basic
types, or constructed types that do not have components, the current position is fixed at the value -1.

The operations for traversing the component DynAnys of a DynAny object are common to all DynAny
subtypes, hence they are defined in the DynAny base interface. The table below lists the operations
available for traversing a DynAny object.

Operation Description

8.6 Traversing the Value of a DynAny Object 55

Operation Description
seek Sets the current position to the

specified index
rewind Sets the current position to the first

component (index 0)
next Advances the current position to the

next component
component_count Returns the number of components
current_component Returns the component at the current

position

The following code segment illustrates one way of traversing the component DynAnys of a DynStruct
object. As the DynStruct is traversed, the value of each component is obtained and printed. Exception
handling is omitted for brevity.

DynAny curComp = null;

// print the value of the first component
curComp = dynStruct.current_component ();
System.out.println ("field1 = " + curComp.get_long ());

// advance to the next component
dynStruct.next ();

// print the value of the second component
curComp = dynStruct.current_component ();
System.out.println ("field2 = " + curComp.get_string ());

The next code segment illustrates another way to perform the same task.

// go back to the first component
dynStruct.rewind (); // same as calling seek (0)

// print the value of the first component
System.out.println ("field1 = " + dynStruct.get_long ());

// advance to the next component
dynStruct.seek (1);

// print the value of the second component
System.out.println ("field2 = " + dynStruct.get_string ());

56 Dynamic Management of Any Values

As the second code segment illustrates, if the component DynAny represents a basic type, its value
can be extracted (or inserted) by calling the accessor operation on the parent DynAny directly, rather than
first obtaining the component using the currentcomponent operation.

8.7 Constructed Types

This section describes the interfaces in the DynamicAny module that represent the constructed types
supported by JacORB. Each of these interfaces extends the DynAny interface.

8.7.1 DynFixed

A DynFixed object represents a fixed value. Since IDL does not have a generic type to represent a fixed
type, the operations in this interface use the IDL string type. The value represented by a DynFixed object
can be accessed (as a string) using the getvalue and setvalue operations.

A DynFixed object has no components.

8.7.2 DynEnum

A DynEnum object represents a single enumerated value. The integer (ordinal) value of the enumerated
value can be accessed with the getasulong and setasulong operations. The string (IDL identifier) value
of the enumerated value can be accessed with the getasstring and setasstring operations.

A DynEnum object has no components.

8.7.3 DynStruct

A DynStruct object represents a struct value or an exception value. The currentmembername and cur-
rent memberkind operations return the name and TCKind value of the TypeCode of the member at the
current position of the DynStruct. The members of the DynStruct can be accessed with the getmembers
and setmembers operations.

The component DynAnys of a DynStruct object are the members of the struct or exception. A Dyn-
Struct representing an empty exception has no components.

8.7.4 DynUnion

A DynUnion object represents a union value. The value of the discriminator can be accessed using the
get discriminator and setdiscriminator operations.

If the discriminator is set to a value that names a member of the union then that member becomes
active. Otherwise, if the value of the discriminator does not name a member of the union then there is no
active member.

8.8 Converting between Any and DynAny Objects 57

If there is an active member, the member operation returns its value as a DynAny object, and the
membername and memberkind operations return its name and the TCKind value of its TypeCode. These
operations throw an InvalidValue exception if the union has no active member.

A DynUnion object can have either one or two components. The first component is always the dis-
criminator value. The second component is the value of the active member, if one exists.

8.7.5 DynSequence

A DynSequence object represents a sequence. The length of the sequence can be accessed using the
get length and setlength operations. The elements of the sequence can be accessed using the getelements
and setelements operations.

The component DynAnys of a DynSequence object are the elements of the sequence.

8.7.6 DynArray

A DynArray object represents an array. The elements of the array can be accessed using the getelements
and setelements operations.

The component DynAnys of a DynArray object are the elements of the array.

8.8 Converting between Any and DynAny Objects

The DynAny interface defines operations for converting between Any objects and DynAny objects. The
from any operation initialises the value of a DynAny with the value of a specified Any. A TypeMismatch
exception is thrown if the type of the Any does not match the type of the DynAny. The toany operation
creates an Any from a DynAny.

As an example of how these operations might be useful, suppose one wants to dynamically modify
the contents of some constructed type, such as a struct, which is represented as an Any. The following
steps will accomplish this task:

1. A DynStruct object is constructed from the TypeCode of the struct using the DynAnyFac-
tory::createdyn any from type code operation.

2. The DynAny::fromany operation is used to initialise the value of the DynStruct with the value of
the Any.

3. The contents of the DynStruct can now be traversed and modified.

4. A new Any can be created to represent the modified struct using the DynAny::toany operation.

58 Dynamic Management of Any Values

8.9 Further Examples

The demo/dynany directory of the JacORB repository contains example code illustrating the use of Dy-
nAny objects. Further code can be found in the org.jacorb.test.orb.dynany package of the JacORB-Test
repository.

9 Objects By Value

Until CORBA 2.3, objects could only be passed using reference semantics: there was no way to specify
that object state should be copied along with an object reference. A further restriction of the earlier
CORBA versions was that all non-object types (structs, unions, sequences, etc.) werevalues, so you
could not use, e.g. a reference-to-struct to construct a graph of structure values that contained shared
nodes. Finally, there was no inheritance between structs.

All these shortcomings are addressed by theobjects-by-value(OBV) chapters of the CORBA specifi-
cation: the addition of stateful value types supports copy semantics for objects and inheritance for structs,
boxed value types introduce reference semantics for base types, and abstract interfaces determine whether
an argument is sent by-value or by-reference by the argument’s runtime type. The introduction of OBV
into CORBA presented a major shift in the CORBA philosophy, which had been to strictly avoid any
dependence on implementation details (state, in particular). It also added a considerable amount of mar-
shaling complexity and interoperability problems. (As a personal note: Even in CORBA 2.6, the OBV
marshaling sections are still not particularly precise...)

JacORB 2.0 implements most of the OBV specification. Boxed value types and regular value types
work as prescribed in the standard (including value type inheritance, recursive value types, and factories).
Still missing in the current implementation is run-time support for abstract value types (although the
compiler does accept the corresponding IDL syntax), and the marshaling of truncatable value types does
not yet meet all the standard’s requirements (and should thus be called “beta”).

9.1 Example

To illustrate the use of various kinds of value types, here’s an example which is also part of the demo
programs in the JacORB distribution. The demo shows the use of boxed value types and a recursive
stateful value type. Here’s the IDL definition fromdemo/value/server.idl :

module demo {
module value {

valuetype boxedLong long;
valuetype boxedString string;

valuetype Node {
public long id;

60 Objects By Value

public Node next;
};

interface ValueServer {
string receive_long (in boxedLong p1, in boxedLong p2);
string receive_string (in boxedString s1, in boxedString s2);
string receive_list (in Node node);

};
};

};

From the definition of the boxed value typeboxedLong andboxedString , the IDL generates the
following Java class, which is simply a holder for the long value. No mapped class is generated for the
boxed string value type.

package demo.value;

public class boxedLong
implements org.omg.CORBA.portable.ValueBase

{
public int value;
private static String[] _ids = { boxedLongHelper.id() };

public boxedLong(int initial)
{

value = initial;
}
public String[] _truncatable_ids()
{

return _ids;
}

}

The boxed value definitions in IDL above permit uses of non-object types that are not possible with
IDL primitive types. In particular, it is possible to pass Javanull references where a value of a boxed
value type is expected. For example, we can call the operationreceive long and pass one initialized
boxedLong value and a null reference, as show in the following snippet from the client code:

ValueServer s = ValueServerHelper.narrow(obj);
boxedLong boxL = new boxedLong (774);

System.out.println ("Passing two integers: "
+ s.receive_long (boxL , null));

9.2 Factories 61

With a regularlong parameter, anull reference would have resulted in aBADPARAMexception.
With boxed value types, this usage is entirely legal and the result string returned from theValueServer
object is‘‘one or two null values’’ .

A second new possibility of the reference semantics that can be achieved by “boxing” primitive IDL
types issharingof values. With primitive values, two variables can have copies of the same value, but
they cannot both refer to the same value. This means that when one of the variables is changed, the other
one retains its orignal value. With shared values that arereferenced, both variables would always point to
the same value.

The stateful value typeNode is implemented by the programmer in a classNodeImpl (see the
JacORB distribution for the actual code). The relationship between this implementation class and the
corresponding IDL definition is not entirely trivial, and we will discuss it in detail below.

9.2 Factories

When an instance of a (regular) value type is marshaled over the wire and arrives at a server, a class that
implements this value type must be found, so that a Java object can be created to hold the state information.
For interface types, which are only passed by reference, something similar is accomplished by the POA,
which accepts remote calls to the interface and delivers them to a local implementation class (theservant).
For value type instances, there is no such thing as a POA, because they cannot be called remotely. Thus,
the ORB needs a different mechanism to know which Java implementation class corresponds to a given
IDL value type.

The CORBA standard introducesvalue factoriesto achieve this. Getting your value factories right
can be anywhere from trivial to tricky (we will cover the details in a minute), and so the standard suggests
that ORBs also provide convenience mechanisms to relieve programmers from writing value factories if
possible. JacORB’s convenience mechanism is straightforward:

If the implementation class for an IDL value type A is named AImpl, resides in the same
package as A, and has a no-argument constructor, then no value factory is needed for that
type.

In other words, if your implementation class follows the common naming convention (“...Impl”), and
it provides a no-arg constructor so that the ORB can instantiate it, then the ORB has all that it needs
to (a) find the implementation class, and (b) create an instance of it (which is then initialized with the
unmarshaled state from the wire).

This mechanism ought to save you from having to write a value factory 99% of the time. It works for
all kinds of regular value types, including those with inheritance, and recursive types (where a type has
members of its own type).

If you do need more control over the instance creation process, or the unmarshaling from
the wire, you can write your own value factory class and register it with the ORB using
ORB.register value factory(repositoryid, factory) . The factory object needs to implement
the interfaceorg.omg.CORBA.portable.ValueFactory , which requires a single method:

62 Objects By Value

public Serializable read_value (InputStream is);

When an instance of typerepositoryid arrives over the wire, the ORB calls theread value()
method, which must unmarshal the data from the input stream, create an instance of the appropriate
implementation class from it, and return that.

The easiest way to implement this method is to create an instance of the implementation class, and
pass it to theread value() method of the given InputStream:

public Serializable read_value (InputStream is) {
A result = new AImpl();
return is.read_value(result);

}

The InputStream.read value() method registers the newly created instance in the stream’s
indirection table, and then reads the data from the stream and initializes the givenvalue instance from
it.

The value factory must be registered with the ORB usingregister value factory() . As
a special convenience (defined in the CORBA standard), if the value factory class for typeA is called
ADefaultFactory , then the ORB will find it automatically and use it, unless a different factory has
been explicitly registered.

It sometimes causes confusion that you can also definefactory methodsin a value type’s IDL. These
factory methods are completely unrelated to the unmarshaling mechanism discussed above; they are sim-
ply a portable means to declare what kinds of “constructors” a value type implementation should have.
They are purely for local use, but since they are “factories”, the corresponding methods must also be
implemented in the type’sValueFactory implementation.

10 Interface Repository

Run–time type information in CORBA is managed by the ORB’sInterface Repository(IR) component. It
allows to request, inspect and modify IDL type information dynamically, e.g., to find out which operations
an object supports. Some ORBs may also need the IR to find out whether a given object’s type is a subtype
of another, but most ORBs can do without the IR by encoding this kind of type information in the helper
classes generated by the IDL compiler.

In essence, the IR is just another remotely accessible CORBA object that offers operations to retrieve
(and in theory also modify) type information.

10.1 Type Information in the IR

The IR manages type information in a hierarchical containment structure that corresponds to the structure
of scoping constructs in IDL specifications: modules contain definitions of interfaces, structures, constants
etc. Interfaces in turn contain definitions of exceptions, operations, attributes and constants. Figure10.1
illustrates this hierarchy.

ConstantDef
TypedefDef
ExceptionDef
InterfaceDef

ConstantDef
TypedefDef
ExceptionDef
ModuleDef

InterfaceDef

ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef

Repository

ModuleDef

Figure 10.1: Containers in the Interface Repository

The descriptions inside the IR can be identified in different ways. Every element of the repository

64 Interface Repository

has a unique, qualified name which corresponds to the structure of name scopes in the IDL specification.
An interfaceI1 which was declared inside moduleM2which in turn was declared inside moduleM1thus
has a qualified nameM1::M2::I1 . The IR also provides another, much more flexible way of naming
IDL constructs usingRepository Ids. There are a number of different formats for RepositoryIds but every
Repository must be able to handle the following format, which is marked by the prefix"IDL:" and
also carries a suffix with a version number, as in, e.g., ”IDL:jacorb/demo/grid:1.0 ”. The name
component between the colons can be set freely using the IDL compiler directives#pragma prefix
and#pragma ID . If no such directive is used, it corresponds to the qualified name as above.

10.2 Repository Design

When designing the Interface Repository, our goal was to exploit the Java reflection API’s functionality
to avoid having to implement an additional data base for IDL type descriptions. An alternative design is
to use the IR as a back-end to the IDL compiler, but we did not want to introduce such a dependency and
preferred to a have a rather “light–weight” repository server. As it turned out, this design was possible
because the similarities between the Java and CORBA object models allow us to derive the required IDL
information at run time. As a consequence, we can even do without any IDL at compile time. In addition
to this simplification, the main advantage of our approach lies in avoiding redundant data and possible
inconsistencies between persistent IDL descriptions and their Java representations, because Java classes
have to be generated and stored anyway.

Thus, the Repository has to load Java classes, interpret them using reflection and translate them into
the appropriate IDL meta information. To this end, the repository realizes a reverse mapping from Java to
IDL. Figure 10.2illustrates this functionality, wheref−1 denotes the reverse mapping, or the inverse of
the language mapping.

Java classes

IR-Process

IDL-Meta data

-1f

Figure 10.2: The JacORB Interface Repository

10.3 Using the IR 65

10.3 Using the IR

For the ORB to be able to contact the IR, the IR server process must be running. To start it, simply type
the ir command and provide the required arguments:

$ ir /home/brose/classes /home/brose/public html/IR Ref

The first argument is a path to a directory containing.class files and packages. The IR loads these
classes and tries to interpret them as IDL compiler–generated classes. If it succeeds, it creates internal
representations of the adequate IDL constructs. The second argument on the command line above is
simply the name of the file where the IR stores its object reference for ORB bootstrapping.

To view the contents of the repository, you can use the GUI IRBrowser tool or the query command.
First, let’s query the IR for a particular repository ID. JacORB provides the commandqir (“query IR”)
for this purpose:

$ qir IDL:raccoon/test/cyberchair/Paper:1.0

As result, the IR returns an InterfaceDef object, andqir parses this and prints out:

interface Paper
{

void read(out string arg_0);
raccoon::test::cyberchair::Review getReview(in long arg_0);
raccoon::test::cyberchair::Review submitReview(

in string arg_0, in long a rg_1);
void listReviews(out string arg_0);

};

To start the IRBrowser, simply type

$ irbrowser

Figure10.3gives a screen shot of the IR browser.

The Java classes generated by the IDL compiler using the standard OMG IDL/Java language mapping
do not contain enough information to rebuild all of the information contained in the original IDL file.
For example, determining whether an attribute in an interface wasreadonly or not is not possible, or
telling the difference betweenin andinout parameter passing modes. Moreover, IDL modules are not
explicitly represented in Java, so telling whether a directory in the class path represents an IDL module is
not easily possible. For these reasons, the JacORB IDL compiler generates a few additional classes that
hold the required extra information if the compiler switch-ir is used when compiling IDL files:

$ idl -ir myIdlFile.idl

The additional files generated by the compiler are:

• a XModule.java class file for any IDL module X

• aYIRHelper.java class file for any interface Y.

66 Interface Repository

If no .class files that are compiled from these extra classes are found in the class path passed to
the IR server process, the IR will not be able to derive any representations. Note that the IDL compiler
does not make any non–compliant modifications to any of the standard files that are defined in the Java
language mapping — there is only additional information.

One more caveat about these extra classes: The compiler generates theXModule.java class only
for genuine modules. Java package scopes created by applying the-d switch to the IDL compiler do not
represent proper modules and thus do not generate this class. Thus, the contents of these directories will
not be considered by the IR.

When an object’s client calls theget interface() operation, the ORB consults the IR and returns
an InterfaceDef object that describes the object’s interface. UsingInterfaceDef operations on
this description object, further description objects can be obtained, such as descriptions for operations or
attributes of the interface under consideration.

The IR can also be called like any other CORBA object and provideslookup() or
lookup name() operations to clients so that definitions can be searched for, given a qualified name.
Moreover, the complete contents of individual containers (modules or interfaces) can be listed.

Interface Repository meta objects provide further description operations. For a given
InterfaceDef object, we can inspect the different meta objects contained in this object (e.g.,
OperationDef objects). It is also possible to obtain descriptions in form of a simple structure of
type InterfaceDescription or FullInterfaceDescription . Since structures are passed
by value and aFullInterfaceDescription fully provides all contained descriptions, no further
—possibly remote — invocations are necessary for searching the structure.

10.3 Using the IR 67

Figure 10.3: IRBrowser Screenshot

68 Interface Repository

11 The JacORB Appligator

by Sebastian M̈uller and Steve Osselton

Version 1.4 of JacORB includes a new implementation of the Appligator. This is a portable interceptor
based IIOP proxy. Using this proxy you can both run Java Applets with JacORB and use JacORB across
firewalls and the Internet. This new implementation no longer supports HTTP tunneling.

11.1 Appligator Functionality

The Appligator is a GIOP proxy. When the Appligator is used, instead of a client calling directly to a
server it calls to the Appligator which then itself calls on to the server. This is all transparent as far as a
client is concerned. The basic mechanism of operation is as follows:

1. A client that wishes to use the Appligator installs a client side interceptor.

2. When the client makes a call the interceptor checks to determine whether the call should be redi-
rected to an Appligator. If so, then the original call target is encoded within a service context and a
ForwardRequest exception is thrown so that the ORB redirects the call to the Appligator.

3. When the Appligator receives a forwarded request it extracts the original target from the service
context and calls onto the original target. The actual proxy implementation within the Appligator
is invoked via DSI and calls on to the target via DII.

11.2 Using The Appligator

The Appligator can be run as a normal CORBA server via the ’appligator’ shell script or batch file. The
Appligator is configured vis both command line arguments and properties stored in the ORB configuration
file ’jacorb.properties’.

11.2.1 Starting Appligator

The Appligator can be invoked as follows:

70 The JacORB Appligator

$ appligator <port> <filename> [-dynamic]

This starts the Appligator on the specified port and writes it’s IOR to the specified file.

The ’-dynamic’ flag is optional and determines whether the object key used for the Appligator IOR
is dynamically (i.e. randomly) selected or fixed. If a fixed id is used then the configuration property
’jacorb.ProxyServer.ID’ is used as the object key value. If this is not set then this defaults to ’Appligator’.
Using a fixed object key has the advantage that this key is used every time the Appligator restarts so a
remote client would not have to update it’s reference to the Appligator (typically an IOR file).

11.2.2 Client Configuration

Appligator clients need to install the appropriate client side interceptor class. This can be done by config-
uring the portable ORB initializer class ’ProxyClientInitializer’ by setting the following ORB initialization
property:

org.omg.PortableInterceptor.ORBInitializerClass.org.jacorb.
proxy.ProxyClientInitializer

11.2.3 Appligator Configuration Appligator

configuration properties are placed in the ’jacorb.properties’ file, all have the common prefix
’jacorb.ProxyServer’. Configuration properties are used either for the configuration of the Appligator
server itself or for the configuration of Appligator clients.

Appligator Server Properties

If the ’jacorb.ProxyServer.Name’ property is set and the name service has been configured and is available
then the Appligator will register itself in the name service using this name. If the ’jacorb.ProxyServer.ID’
property is set and the Appligator has not been run with the ’-dynamic’ flag then this property is used as
the object key in the created Appligator IOR.

Appligator Client Properties

The ’jacorb.ProxyServer.URL’ configuration property is used by clients to locate the default Appligator.
This URL should map to an IOR file written by an Appligator. If the ’jacorb.ProxyServer.Network’ and
’jacorb.ProxyServer.Netmask’ properties are set these are used to determine the local network address for
a client. If this is set then any calls to objects within this network will not be redirected to the Appligator.
This is useful when a CORBA server may need to call to an Appligator to access remote servers but may
want to communicate with local servers directly. The dotted decimal form should be used for both these
properties, for example:

jacorb.ProxyServer.Netmask=255.255.255.0

jacorb.ProxyServer.Network=160.45.110.0

11.3 Applet Support 71

Clients can be configured to use different Appligators to access objects in different subnets. To do this
configuration properties of the form ’jacorb.ProxyServer.URL-¡network¿-¡netmask¿’ can be used. Here
the URL property should map to the Appligator IOR for the particular subnet identified by ¡network¿ and
¡netmask¿. For example:

jacorb.ProxyServer.URL-160.45.120.0-255.255.255.0=file:/tmp/net1.ior

11.3 Applet Support

Regular Java programs can connect to every host on the Internet, applets can only open connections to
their applethost (the host they are downloaded from). This lets Applets only use CORBA servers on their
applethost, if no proxy is used. With JacORB Appligator, access for your Applets is no longer restricted.
Placed on the applethost, Appligator handles all connections from and to your Applet transparently.

Due to the transparency of JacORB Appligator you can write your Applet as if it were a normal
CORBA program. The only thing you have to do is to use a special initialization of the ORB by calling
the ORB init operation that takes an Applet as a parameter:

ORB orb = ORB.init (applet, properties);

A normal JacORB program reads a local jacorb.properties file to get the URL of its name server and
other vital settings. An Applet of course has no local properties file, but a remote one: You have to place
the properties file (which has the same syntax and parameters as the normal file) in the same directory as
your Applet (the file name has to be: jacorb.properties, without a leading dot).

Similar to the name server, Appligator writes its IOR to a file. Your Applet has to know the lo-
cation of this file to retrieve the IOR of Appligator. You must set the location of the IOR file via the
jacorb.properties file (jacorb.ProxyServer.URL) or with an Applet parameter in the ¡APPLET¿ HTML tag
(JacorbProxyServerURL).

11.3.1 Summary

• Init the ORB with jacorb.orb.init(applet,properties), where applet is this Applet and properties are
java.util.Properties (which can be null).

• Put a jacorb.properties file in the directory of the Applet.

• Specify the location for the Appligator IOR file in the jacorb.properties (jacorb.ProxyServer.URL)
or in an Applet parameter (JacorbProxyServerURL)

• Make sure the name server IOR file is accessible for the Applet (lies on the applethost)

• Start Appligator on the applethost (web server) with:

$ appligator <port> <filename>

Where filename is the location where the Appligator IOR is written and is the location specified in
the JacORB properties file or Applet parameter.

72 The JacORB Appligator

11.3.2 Applet Properties

As described above there are some ways for the Applet to get its JacORB properties file. The most
important property is the URL to the Appligator IOR file. Without this property the Applet will not work.
If you use a name server, the URL to the name server IOR must also be specified.

Properties can be set in three ways:

1. In the ORB.init() call with the java.util.Properties parameter.

2. In the JacORB properties file located in the same directory as the Applet

3. The URL to the name server and Appligator IOR file can be set in the Applet tag in the HTML file

11.3.3 Appligator and Netscape/IE, appletviewer

Netscape Navigator/Communicator comes with its own (outdated) CORBA support. You have to delete
Netscape’s CORBA classes to use JacORB. To do this you have to delete the file iiop10.jar located in NS
ROOT/java/classes. It’s a good idea to store a backup of Netscape’s file in another directory. Note that
renaming this jar file in the original directory does not suffice if you don’t also change the .jar extension
because Netscape loads all jar files in this directory. You then need to install jacorb.jar in this directory.

If Netscape loads wrong classes or throws security exceptions (have a look at Netscape’s Java Console
to see this) be sure to check your CLASSPATH and look for old jar files or “.”. Remove all JacORB and
VisiBroker classes from your CLASSPATH. We succeeded running JacORB Applet clients on Netscape
4.72 with the Java 1.3 plugin.

Microsoft’s Internet Explorer is stricter than Netscape: Even downloaded classes are not allowed to
listen on a socket. We strongly advise to use Sun’s Java 1.3 plugin with IE also. To trick IE into using
JacORB, you need to copy JacORB classes to $WINNT\Java\TrustLib. You can either copy the entire
jacorb.jar and unpack it in this directory or just copy the directories jacorb, org,and HTTPClient.

Appligator works well with Sun’s appletviewer. You only have to make the appletviewer replace the
Sun’s CORBA classes with JacORB’s classes. A typical appletviewer call for JacORB Applets looks like
this (written in one command line):

$ appletviewer http://www.example.com/CORBA/dii example.html

There is a shell script called ”jacapplet” in JacORB’s bin directory, which calls the appletviewer with
the appropriate options (you have to edit it to match your local JDK path).

If you use the Appligator with other browsers or if you know a way to load the JacORB classes without
removing and copying jars please let us know.

11.3.4 Examples

There are some example applets in the demo directory (jacorb/demo/applet). They are based on the normal
examples. The examples include a HTML file which calls the Applet. To run the example start the name

11.4 Firewall Support 73

server first. Start Appligator on your web server and than the normal example server corresponding to
the Applet example on any computer in any order. Then you can call the example Applet with the JDK
appletviewer or Netscape.

Be sure to have a jacorb.properties file and the jacorb.jar in place.

11.4 Firewall Support

Typically firewalls do two things: filter traffic by port, and filter traffic by protocol. The JacORB Appli-
gator can be used to deal with port restrictions.

The Appligator was written to avoid the sandbox restrictions for Java applets. Unsigned applets can
only have connections to the host they are loaded from, which makes them useless in most distributed
CORBA scenarios. The Appligator is a GIOP proxy, which enables applets to connect to every CORBA
server by redirecting the traffic from the Applet to the CORBA server to the proxy. The Appligator also
works the other way round: Every connection the Applet is redirected to the Appligator.

Even without applets the Appligator can be used as a GIOP proxy on a firewall. The Appligator is a
CORBA object itself and is explicitly started on a given port using a command line argument ¡port¿. All
incoming traffic to the Appligator will go to port ¡port¿. If you configure your CORBA object behind the
firewall to be aware of the Appligator all traffic from and to this objects will go through the Appligator.

To make your port filtering firewall working with CORBA and GIOP messages you must ask your
system administrator to assign a port for GIOP messages on the firewall. Start the Appligator on this port.

Now all CORBA servers (which are aware of the Appligator) in your enclave can be contacted over
the Appligator. If your CORBA client wants to contact a server in the Internet outside the firewall the
connection will go over the Appligator. Callbacks from the Internet to your client do not work with
Netscape.

Finally you have to specify the location on the Appligator. This is done the same way as JacORB
determines to location of the name server: When the Appligator starts the IOR of the Appligator is written
to a file which is put to the location you specified as command parameter. This file must be accessible to
all clients that want to use the Appligator. You can use a shared file system to access this file or put it on
a web server etc. The location of the file in which the IOR of the Appligator is stored must be set in the
jacorb.properties file. Use the ”jacorb.ProxyServer.URL” property for this.

11.4.1 Summary

• Use the Appligator as a GIOP proxy on a firewall if your firewall is configured to block all traffic
but traffic on some special ports.

• Ask your system administrator to assign a special port for GIOP on your firewall and start the
Appligator on this port on the firewall: for example:$ appligator 7777 app.ior

• All CORBA objects that should be reachable from outside the firewall or need to contact a CORBA
object outside the firewall must use the Appligator as a proxy. Configure the client side ORB

74 The JacORB Appligator

initializer for those applications

• Set the location of the Appligator in the jacorb.properties file of your clients
(jacorb.ProxyServer.URL)

11.4.2 NAT Firewalls

Most commercial firewalls support Network Address Translation (NAT). Here the address of an internal
server is not made directly visible to the external Internet, but transformed into another configured address
(typically that of the firewall).

The problem here is that the IOR written by an Appligator will contain it’s internal address. If a
remote client wishes to access this Appligator via a NAT firewall then it cannot use this IOR direct as it
will not contain a routeable address. To support this the Appligator IOR used by a remote client must be
patched to contain the NAT address of the firewall. A new utility ’fixior’ has been provided to do this.
This can be run as follows:

$ fixior <host> <port> <ior_file>

11.4.3 Security Considerations

When allowing Appligator traffic through a fixed port in a firewall the Appligator can in effect allow
access to any internal CORBA server. As the real service target is contained within a service context a
knowledgeable user could attempt to exploit this to access an unauthorized service. To do this a hacker
would have to know the object key used for the Appligator and a CORBA reference to an internal service.
For this reason if fixed Appligator keys are used it is recommended that the default value is not used. A
much better solution is to tunnel the Appligator communication through a secure channel such as afforded
by a Secure Shell (SSH) or a Virtual Private Network (VPN).

11.4.4 Use of SSH

Rather than configure a firewall to allow direct access to an Appligator a better solution is to en-
able SSH and use SSH as a secure tunnel to the Appligator. To do this you first need to patch
the Appligator IOR file used by the client so that this refers to a local port on the local host:
$ fixior 127.0.0.1 11111 app.ior

SSH can then be used to create a secure tunnel between this port and the remote port on the server
machine used by the Appligator. If the Appligator was running on remote machine ’server’ on port 22222
this could be done as follows:

$ ssh -T -L 11111:server:22222 server

If you have a scenario where the server needs to callback to a client and dual Appligators are deployed
on either side of a firewall then SSH can be used to create a tunnel for each Appligator as follows:

$ ssh -T -L 11111:server:22222 -R 33333:client:44444 server

11.4 Firewall Support 75

Here SSH has created a local tunnel between port 11111 on ’client’ and port 22222 on ’server’ and a
remote tunnel between port 33333 on ’server’ and port 44444 on ’client’. The ’server’ Appligator would
be running on port 22222 and the ’client’ Appligator on port 44444. The Appligator IOR used by ’client’
to access the ’server’ Appligator would be patched to have endpoint 127.0.0.1:11111 and the Appligator
IOR used by ’server’ to access the ’client’ Appligator would be patched to have endpoint 127.0.0.1:33333.

76 The JacORB Appligator

12 IIOP over SSL

Using SSL to authenticate clients and to protect the communication between client and target requires no
changes in your source code. The only notable effect is that SSL/TLS type sockets are used for transport
connections instead of plain TCP sockets — and that connection setup takes a bit longer.

The only prerequisites are that you rebuild JacORB with cryptography support. You also need to set
up a key store file that holds your cryptographic keys, and to configure SSL by setting a few properties.
All of this is described in this chapter.

12.1 Re–Building JacORB’s security libraries

In the standard distribution, the JacORB security libraries are not enabled. To do so, you simply need to
recompile JacORB with the required SSL libraries in your CLASSPATH. If these libraries are not found,
JacORB will be rebuilt without SSL support.

To successfully rebuild JacORB with SSL support, the following is required:

• when using IAIKs libraries:

– IAIK-JCE 2.591 or later, the security provider classes downloadable from
http://jcewww.iaik.tu-graz.ac.at,

– iSaSiLk 3.0 or later, the SSL implementation from the same source.

• when using Suns libraries:

– JDK 1.4 or jsse1.0.2 available from the Developer Connection (for jsse1.0.2, please see the
README.jsse 1 0 2 in src/org/jacorb/security/ssl/sun jsse on how to
compile).

– For key management, you also need additional packages like OpenSSL. These are not neces-
sary for JacORB to work.

Install the desired packages and read the documentation carefully. After successfull installation, build
JacORB anew by typingant in your JacORB installation directory.

http://jcewww.iaik.tu-graz.ac.at

78 IIOP over SSL

12.2 IAIK specific setup

This section covers topics that are specific to IAIKs libraries.

12.2.1 Setting up an IAIK key store

SSL relies on public key certificates in the standard X.509 format. These certificates are presented in the
authentication phase of the SSL handshake and used to compute and exchange session keys. This section
explains how to create and store these certificates.

The Java 2 security API provides interfaces that access a persistent data structure calledKeyStore.
A key store is simply a file that contains public key certificates and the corresponding private keys. It
also contains other certificates that can be used to verify public key certificates. All cryptographic data is
protected using passwords and accessed using names calledaliases.

JacORB provides a GUI tool to create and manipulate key store files, the KeyStoreManager. It can
generate key pairs, sign public keys, import or export certificates, and define trusted certificate authorities.
To start the KeyStoreManager, simply typeks on the command line. The GUI lets you select and open
existing key store files, or create new ones.

Starting with an empty key store, you first need to create a new key store and then a key pair and
certificate. SelectNew from theFile menu to create a key store, and thenNew from theKeys menu.
You will then be asked to provide a new alias name for your new key entry. You also need to choose a
password. You can leave the algorithm and key length fields in the combobox menu unchanged.

You now have a public key certificate that you can present for authentication, claiming identity with
the alias name that has been embedded in the certificate. Since anybody could present such a certificate,
receivers require that the certificate be digitally signed by someone they trust, aCertificate Authority(CA).
By signing the certificate, a CA supports the identity claim of the certificate subject. Whose signature is
accepted as trustworthy is just a matter of configuration, but normally proper CAs are expected to only
sign certificates that they have carefully scrutinized — or even created themselves.

12.2 IAIK specific setup 79

For convenience you can act as a CA yourself, using the KeyStoreManager GUI to import certificates
and then sign and export them again. The originating key store can then re–import the certificate that
now bears the digital signature of someone acting as a CA. The key store has a standard key chain format
that must be used to store public key certificates. The first entry in the key chain is your own public key
certificate as generated by the key store. It is automatically signed with its own private key. Second in
the chain is the public key certificate that is signed by the CA. The last entry in a key chain must hold the
CA’s public key certificate, signed using its private key. Trust in the CA key is “axiomatic”.

You can check the validity of a key chain by selecting an alias and then choosingVerify Chain
from theKeys menu. Unless the key chain has the proper formatand the CA’s public key certificate
is also declared as trusted using theTrustees--add menu, the verification will fail. Only of the
verification succeeds will you be able to use a public key certificate in the SSL connection setup. More
documentation on key stores can be found in the Java tool documentation for thekeytool command. If

80 IIOP over SSL

you care for “real” security, be advised that setting up and managing (or finding) a properly administered
CA is essential for the overall security of your system.

12.2.2 Step–By–Step certificate creation

In order to generate a simple public key infrastructure you can perform the following steps:

1. Create new keystores (File/new) and keypairs (Keys/new) for the CA and for the user.

2. Open the user keystore (File/open), select the key entry and export the self-signed certificate (Cer-
tificates/Export).

3. Open the CA keystore and add the user certificate as a Trustee (Trustees/add. . .).

4. Select the trusted user certificate and create a signed public key certificate (Certificates/Create).
Leave the role name field empty, enter the CAs private key password and save the new certificate
by clicking OK.

5. Export the CAs self-signed certificate to a file (as explained above). Delete the trusted certificate
from the CA keystore (Trustees/Delete).

6. Open the user keystore again. Select the key entry, the import the CA-signed user cert (Certifi-
cates/Import), and the self-signed CA cert.

7. Add the self-signed CA cert as a trustee. This is only needed for verifying the chain, therefor
the keystore can be deployed without it. Please note that a failed verification might result in a
SignatureException.

12.3 Configuring SSL properties

When the ORB is initialized by the application, a couple of properties are read from files and the command
line. To turn on SSL support, you have to set the following property to “on”:

jacorb.security.support_ssl=on

This will just load the SSL classes on startup. The configuration of the various aspects of SSL is done
via additional properties.

As explained in the previous section, cryptographic data (key pairs and certificates) is stored in a
keystore file. To configure the file name of the keystore file, you need to define the following property:

jacorb.security.keystore=AKeystoreFileName

12.3 Configuring SSL properties 81

The keystore file name can either be an absolute path or relative to the home directory. Keystores are
searched in this order, and the first one found is taken. If this property is not set, the user will be prompted
to enter a keystore location on ORB startup.

To avoid typing in lots of aliases and passwords (one for the key store, and one for each entry that is
used), you can define default aliases and passwords like this:

the name of the default key alias to look up in the keystore
jacorb.security.default_user=brose
jacorb.security.default_password=jacorb

These SSL settings can be further refined using security options as in the following property defini-
tions:

jacorb.security.ssl.client.supported_options=0
jacorb.security.ssl.client.required_options=0

jacorb.security.ssl.server.supported_options=0
jacorb.security.ssl.server.required_options=0

The value of these security options is a bit mask coded as a hexadecimal integer. The meanings of
the individual bits is defined in the CORBA Security Service Specification and reproduced here from the
Security.idl file:

typedef unsigned short AssociationOptions;

const AssociationOptions NoProtection = 1;
const AssociationOptions Integrity = 2;
const AssociationOptions Confidentiality = 4;
const AssociationOptions DetectReplay = 8;
const AssociationOptions DetectMisordering = 16;
const AssociationOptions EstablishTrustInTarget = 32;
const AssociationOptions EstablishTrustInClient = 64;
const AssociationOptions NoDelegation = 128;
const AssociationOptions SimpleDelegation = 256;
const AssociationOptions CompositeDelegation = 512;

12.3.1 Client side configuration

jacorb.security.ssl.client.supported_options=20 //EstablishTrustInTarget

This value indicates that the client can use SSL. Actually, this is default SSL behaviour and must always
be supported by the client.

82 IIOP over SSL

jacorb.security.ssl.client.supported_options=40 //EstablishTrustInClient

This makes the client load it’s own key/certificate from it’s keystore, because it must be prepared to
authenticate to the server.

jacorb.security.ssl.client.required_options=20 //EstablishTrustInTarget

This enforces SSL to be used.

jacorb.security.ssl.client.required_options=40 //EstablishTrustInClient

This enforces SSL to be used. Actually, this is no meaningfuly value, since in SSL, the client can’t force
it’s own authentication to the server.

12.3.2 Server side configuration

jacorb.security.ssl.server.supported_options=1 //NoProtection

This tells the clients that the server also supports unprotected connections. If NoProtection is set, no
required options should be set as well, because they override this value.

jacorb.security.ssl.server.supported_options=20 //EstablishTrustInTarget

This value indicates that the server supports SSL. Actually, this is default SSL behaviour and must always
be supported by the server. This also makes the server load it’s key/certificate from the keystore.

jacorb.security.ssl.server.supported_options=40 //EstablishTrustInClient

This value is ignored, because authenticating the client is either required, or not done at all (the client
can’t force its own authentication).

jacorb.security.ssl.server.required_options=20 //EstablishTrustInTarget

This enforces SSL to be used.

jacorb.security.ssl.server.required_options=40 //EstablishTrustInClient

This enforces SSL to be used, and will request the client to authenticate. It also will load trusted certificates
for the authentication process.

13 BiDirectional GIOP

BiDirectional GIOP has its main use in configurations involving callbacks with applets or firewalls where
it sometimes isn’t possible to open a direct connection to the desired target. As a small example, imagine
that you want to monitor the activities of a server via an applet. This would normally be done via a callback
object that the applet registers at the server, so the applet doesn’t have to poll the server for events. To
accomplish this without BiDirectional GIOP, the server would have to open a new connection to the client
which will not work because applets usually arent allowed to act as servers, i.e. open ServerSockets. At
this point BiDirectional GIOP can help because it allows to reuse the connection the applet opened to the
server for GIOP requests from the server to the applet (which isn’t allowed in “standard” GIOP).

13.1 Setting up Bidirectional GIOP

Setting up BiDirectional GIOP consists of two steps:

1. Setting an ORBInitializer property and creating the BiDir policy

2. Adding this policy to the servant’s POA.

13.1.1 Setting the ORBInitializer property

The first thing that is necessary for BiDirectional GIOP to be available is the presence of the following
property, which can be added by the usual ways (see chapter3):

org.omg.PortableInterceptor.ORBInitializerClass.bidir_init=
org.jacorb.orb.giop.BiDirConnectionInitializer

If this property is present on ORB startup, the corresponding policy factory and interceptors will be
loaded.

13.1.2 Creating the BiDir Policy

Creating the necessary BiDir Policy is done via a policy factory hidden in the ORB.

84 BiDirectional GIOP

import org.omg.BiDirPolicy.*;
import org.omg.CORBA.*;

[...]

Any any = orb.create_any();
BidirectionalPolicyValueHelper.insert(any, BOTH.value);

Policy p = orb.create_policy(BIDIRECTIONAL_POLICY_TYPE.value,
any);

The value of the new policy is passed to the factory inside of an any. The ORB is the told to create a
policy of the specified type with the specified value. The newly created policy is then used to create a user
POA. Please note that ifanyPOA of has this policy set,all connections will be enabled for BiDirectional
GIOP, that is even those targeted at object of POAs that don’t have this policy set. For the full source code,
please have a look at the bidir demo in thedemo directory.

13.2 Verifying that BiDirectional GIOP is used

From inside of your application, it is impossible to tell whether requests arrived over a unidirectional or
BiDirectional connection. Therefore, to check if connections are used in both directions, you can either
use a network monitoring tool or take a look at JacORBs output to tell you if your server created a new
connection to the client, or if the existing one is being reused.

If the debug level is set to 2 or larger, the following output on the server side will tell you that a
connection is being reused:

[ConnectionManager: found conn to target <my IP>:<my port>]

If, on the other hand, the connection is not being reused, the client will show the following output:

[Opened new server-side TCP/IP transport to <my host>:<my port>]

13.3 TAO interoperability

There is one problem that may prevent TAO and JacORB to interoperate using BiDirectional GIOP: If
JacORB uses IP addresses as host names (JacORBs default) and TAO uses DNS names as host names
(TAOs default), connections from JacORB clients to TAO servers will not be reused. If, on the other hand,
both use the same “format” for host addresses, interoperability will be successful. There are two ways to
solve this problem:

1. Use ‘‘-ORBdotteddecimaladdresses 1’’ as an command line argument to the TAO
server.

13.3 TAO interoperability 85

2. Recompile JacORB with DNS support (See the INSTALL file for more information).

86 BiDirectional GIOP

14 Portable Interceptors

Since revision 1.1 JacORB provides support for Portable Interceptors These interceptors are compliant to
the standard CORBA specification. Therefore we don’t provide any documentation on how to program
interceptors but supply a few (hopefully helpful) hints and tips on JacORB specific solutions.

The first step to have an interceptor integrated into the ORB is to register anORBInitializer. This is
done by setting a property the following way:

org.omg.PortableInterceptor.ORBInitializerClass.<any_suffix>=
<orb initializer classname>

For compatibility reasons with the spec, the properties format may also be like this:

org.omg.PortableInterceptor.ORBInitializerClass.<orb initializer classname>

The suffix is just to distinguish between different initializers and doesn’t have to have any meaningful
value. The value of the property however has to be the fully qualified classname of the initializer. If the
verbosity is set to≥ 2 JacORB will display aClassNotFoundException in case the initializers class
is not in the class path.

An example line might look like:

org.omg.PortableInterceptor.ORBInitializerClass.my_init=
test.MyInterceptorInitializer

Unfortunately the interfaces of the specification don’t provide any access to the ORB. If you need
access to the ORB from out of the initializer you can cast theORBInitInfo object to jacorb.
orb.portableInterceptor.ORBInitInfoImpl and callgetORB() to get a reference to the
ORB that instantiated the initializer.

When working with service contexts please make sure that you don’t use0x4A414301 as an id
because a service context with that id is used internally. Otherwise you will end up with either your data
not transfered or unexpected internal exceptions.

88 Portable Interceptors

15 Asynchronous Method Invocation

JacORB allows you to invoke objects asynchronously, as defined in theMessagingchapter of the CORBA
specification (chapter 22 in CORBA 3.0). Only the callback model is implemented at this time; there is
no support for polling yet.

Asynchronous Method Invocation (AMI) means that when you invoke a method on an object, control
returns to the caller immediately; it does not block until the reply has been received from the remote
object. The results of the invocation are delivered later, as soon as they are received by the client ORB.
Asynchronous Invocation is entirely a client-side feature. The server is never aware whether it is invoked
synchronously or asynchronously.

In the callback model, replies are delivered to a specialReplyHandlerobject that is registered at the
client side when the asynchronous invocation is started. Here is a brief example for this (see theMessaging
specification for further details). Suppose you have a Server object, defined in a file server.idl.

interface Server
{

long operation (in long p1, inout long p2);
};

The first step is to compile this IDL definition with the “amicallback” compiler switch:

idl -ami_callback server.idl

This lets the compiler generate an additional ReplyHandler class, named AMIServerHandler. For
each operation of the Server interface, this class has an operation with the same name that receives the
return value and out parameters of the original operation. There is an additional method named opera-
tion excep that is called if the invocation raises an exception. If it were defined in IDL, the ReplyHandler
class for the above Server would look like this:

interface AMI_ServerHandler : Messaging::ReplyHandler
{

void operation (in long ami_return_val, in long p2);
void operation_excep (in Messaging::ExceptionHolder excep_holder);

};

90 Asynchronous Method Invocation

To implement this interface, extend the corresponding POA class (or use the tie approach), as with
any CORBA object:

public class AMI_ServerHandlerImpl extends AMI_ServerHandlerPOA
{

public void operation (int ami_return_val, int p2)
{

System.out.println ("operation reply received");
}

public void operation_excep
(org.omg.Messaging.ExceptionHolder excep_holder)

{
System.out.println ("received an exception");

}

}

For each methodm of the original Server interface, the IDL compiler generates a special method
sendcm into the stub class if the “amicallback” switch is on. The parameters of this method are (1) a
reference to a ReplyHandler object, and (2) allin or inout parameters of the original operation, with their
mode changed toin (out parameters are omitted from this operation). The sendc operation does not have
a return value.

To actually make an asynchronous invocation, an instance of the ReplyHandler needs to be created,
registered with the ORB, and passed to the sendc method. The code for this might look as follows:

ORB orb = ...
Server s = ...

// create handler and obtain a CORBA reference to it
AMI_ServerHandler h = new AMI_ServerHandlerImpl()._this (orb);

// invoke sendc
((_ServerStub)s).sendc_operation (h, 4, 5);

Note that the sendc operation is only defined in the stub, and therefore the cast is necessary to invoke
it. There is not yet any consensus in the OMG whether the sendc operation should also be declared in any
of the Java interfaces that make up the Server type. Thus, the fact that you need to make a cast to the stub
class may change in a future version of JacORB.

If you want to try asynchronous invocations with code such as above, make sure that your client
process does something else or at least waits after the invocation has been made, otherwise it will likely
exit before the reply can be delivered to the handler.

The Messagingspecification also defines a number of CORBA policies that allow you to control
the timing of asynchronous invocations. Since these policies are applicable to both synchronous and
asynchronous invocations, we describe them in a separate section (see chapter16).

16 Quality of Service

JacORB implements a subset of the QoS policies defined in chapter 22.2 of the CORBA 3.0 specification.
In the following, we describe each of the policies we have currently implemented, along with notes on
particular JacORB issues concerning each policy. Policies not listed in the following are not yet imple-
mented.

As of yet, all policies described in this chapter areclient-side override policies. The CORBA speci-
fication uses the term for any policy that is explicitly set and thus overrides system defaults. Policies can
be set at different scopes: per object, per thread, or per ORB. The current JacORB implementation only
supports object and ORB scopes. In general, the following steps are necessary:

Step 1. Get anany from the ORB and put the value for the policy into it.

Step 2. Get a Policy object from the ORB which encapsulates the desired value (theany value from the
previous step).

Step 3. Apply the policy to a particular object using theset policy override() operation on the
object reference.

Step 3. alternatively: set the policy ORB-wide using theset policy overrides() operation on
the ORB’sPolicyManager object.

Below is the code that corresponds to the steps listed above, using theSyncScopePolicy(described in
the following section) as an example. Also, have a look at the demo program indemo/policies :

SomeCorbaType server = ...
org.omg.CORBA.ORB orb = ...
org.omg.CORBA.Any a = orb.create_any();
a.insert_short(SYNC_WITH_SERVER.value); // the value for that policy
try
{

Policy p = orb.create_policy(SYNC_SCOPE_POLICY_TYPE.value, a);
server._set_policy_override (new Policy[]{ p },

SetOverrideType.ADD_OVERRIDE);

// get the ORB’s policy manager
PolicyManager policyManager =

92 Quality of Service

PolicyManagerHelper.narrow(
orb.resolve_initial_references("ORBPolicyManager"));

// set an ORB-wide policy
policyManager.set_policy_overrides(new Policy[]{ p },

SetOverrideType.ADD_OVERRIDE);
}
catch (PolicyError e)
{

throw new RuntimeException ("policy error: " + e);
}

The above is portable code that relies only on standardized CORBA APIs to create and set policies.
Because this code is somewhat cumbersome to write, JacORB alsp allows you to simplify it by creating
the Policy object directly via its constructor, as shown below. Note that this is non-portable code:

SomeCorbaType server = ...

Policy p = new org.jacorb.orb.policies.SyncScopePolicy
(SYNC_WITH_TARGET.value);

server._set_policy_override (new Policy[]{ p },
SetOverrideType.ADD_OVERRIDE);

See the package org.jacorb.orb.policies to find out which constructors are defined for the individual
policy types.

16.1 Sync Scope

The SyncScopePolicyspecifies at which point a oneway invocation returns to the caller. (The policy is
ignored for non-oneway invocations.) There are four possible values:

SYNC NONE The invocation returns immediately.

SYNC WITH TRANSPORT The invocation returns after the request has been passed to the transport
layer.

SYNC WITH SERVER The server sends an acknowledgement back to the client when it has received
the request, butbeforeactually invoking the target. The client-side call blocks until this acknowl-
edgement has been received.

SYNC WITH TARGET An ordinary reply is sent back by the server,after the target invocation has
completed. The client-side call blocks until this reply has been received.

16.2 Timing Policies 93

The default mechanism in JacORB isSYNCWITH TRANSPORT, since the call to the socket layer is
a synchronous one. In order to implementSYNCNONE, an additional thread is created on the fly which
in turn calls the socket layer, while the client-side invocation returns after this thread has been created.
Given this additional overhead, it is unlikely thatSYNCNONEyields a significant performance gain for
the client, not even on a multiprocessor machine.

16.2 Timing Policies

For each CORBA request four different points in time can be specified:

Request Start Time the time after which the request may be delivered to its target

Request End Time the time after which the request may no longer be delivered to its target

Reply Start Time the time after which the reply may be delivered to the client

Reply End Time the time after which the reply may no longer be delivered to the client

Each of these points in time can be specified on a per-object level as a client-side override policy:
RequestStartTimePolicy, RequestEndTimePolicy, ReplyStartTimePolicy, andReplyEndTimePolicy(see be-
low for concrete code examples).

Each of these policies specifies an absolute time, which means that they will usually have to be set
again for each individual request. As a convenience, there are two additional policies that allow you to
specify arelative time for Request End TimeandReply End Time; they are calledRelativeRequestTime-
outPolicyandRelativeRoundtripTimeoutPolicy, respectively. These timeouts are simply more convenient
ways for expressing these two times; before each individual invocation, the ORB computes absolute times
from them (measured from the start of the invocation at the client side) and handles them just as if an
absoluteRequest End Timeor Reply End Timehad been specified. We will therefore only discuss the four
absolute timing policies below.

All of these policies apply to synchronous and asynchronous invocations alike.

Figure16.1shows how JacORB interprets the timing policies in the course of a single request.

• As soon as the ORB receives control (prior to marshaling), it converts anyRelativeRequestTime-
outPolicyor RelativeRoundtripTimeoutPolicyto an absolute value, by adding the relative value to
the current system time.

• The ORB then checks whetherRequest End Timeor Reply End Timehave already elapsed. If so,
no invocation is made, and anorg.omg.CORBA.TIMEOUT is thrown to the client.

• After the ORB has sent the request, it waits for a reply untilReply End Timehas elapsed. If
it receives no reply before that, the request is discarded and anorg.omg.CORBA.TIMEOUT
thrown to the client. (JacORB does not currently cancel the outstanding request, it simply discards
the reply, should one arrive after the timeout has elapsed.)

94 Quality of Service

Target

Client

Client ORB Server ORB

check:

wait:

check:

wait:

check:

timeout:

RequestEndTime
ReplyEndTime

RequestEndTime
ReplyEndTime

RequestStartTime

ReplyEndTimeReplyStartTime

ReplyEndTime

Figure 16.1: Timing Policies in JacORB

• On the server side (before demarshaling), the ORB checks whetherRequest End Timeor Re-
ply End Timehave already elapsed. If so, the request is not delivered to the target, and an
org.omg.CORBA.TIMEOUT is thrown back to the client.

• If the request proceeds, the ORB waits until theReply Start Timehas been reached, if one was
specified, and has not already elapsed. After that, the request is delivered to the target.

• After the target has returned control to the ORB, it checks whetherReply End Timehas already
elapsed. If it has, the ORB sends anorg.omg.CORBA.TIMEOUT back to the client, rather than
the actual reply.

• If the reply arrives at the client beforeReply End Timehas elapsed, the ORB waits untilReply Start
Timehas been reached, if one was specified, and has not already elapsed. After that, the reply is
delivered back to the client.

The bottom line of this is that for a simple, per-invocation timeout, you should specify a
RelativeRoundtripTimeoutPolicy. Note that since this relative time is converted into an absolute time,
and also checked on the server side, the clocks on both the server and the client need to be synchronized
at least to the same order of magnitude as the desired timeout.

Programming

In CORBA, points of time are specified to an accuracy of 100 ns, using values of struct
TimeBase::UtcT . To allow easy manipulation of such values from Java, JacORB provides a num-
ber of static methods inorg.jacorb.util.Time . For example, to convert the current Java time into
aUtcT value, write

16.2 Timing Policies 95

UtcT currentTime = org.jacorb.util.corbaTime();

To create aUtcT value that specifies a timen ms in the future, you can write

UtcT time = org.jacorb.util.corbaFuture (10000 * n);

(The argument tocorbaFuture() is in CORBA time units of 100 ns; we multiplyn by 10000 here
to convert it from Java time units (milliseconds).)

The following shows how to set a timing policy for an object using the standard mechanism (see the
beginning of this chapter for an explanation). In this example, we set aReply End Timethat lies one
second in the future:

96 Quality of Service

import org.omg.CORBA.*;

SomeCorbaType server = ... // the object for which we want to set
// a timing policy

org.omg.CORBA.ORB orb = ...
org.omg.CORBA.Any a = orb.create_any();

org.omg.TimeBase.UtcT replyEndTime
= org.jacorb.util.Time.corbaFuture (1000); // one second

org.omg.TimeBase.UtcTHelper.insert (a, replyEndTime);

try
{

Policy p
= orb.create_policy (REPLY_END_TIME_POLICY_TYPE.value, a);

server._set_policy_override (new Policy[]{ p },
SetOverrideType.ADD_OVERRIDE);

}
catch (PolicyError e)
{

...
}

Using the constructors of JacORB’s implementations of policy values, this becomes less verbose:

SomeCorbaType server = ...

Policy p = new org.jacorb.orb.policies.ReplyEndTimePolicy
(org.jacorb.util.Time.corbaFuture (1000));

server._set_policy_override (new Policy[]{ p },
SetOverrideType.ADD_OVERRIDE);

Likewise, to set aRelative Roundtrip Timeoutof one second, write:

SomeCorbaType server = ...

Policy p =
new org.jacorb.orb.policies.RelativeRoundtripTimeoutPolicy (1000);

server._set_policy_override (new Policy[]{ p },
SetOverrideType.ADD_OVERRIDE);

16.2 Timing Policies 97

The difference between this and the example before, where aReply End Timewas used, is that the
latter specifies arelative timeto CORBA. The policy will therefore be valid for all subsequent invocations,
because the absolute deadline will be recomputed before each invocation. In the first example, the deadline
will no longer make sense for any subsequent invocations, since only an absolute time was specified to the
ORB.

98 Quality of Service

17 Connection Management and
Connection Timeouts

JacORB offers a certain level of control over connections and timeouts. You can

• set connection idle timeouts.

• set request timing.

• set the maximum number of accepted TCP/IP connections on the server.

17.1 Timeouts

Connection idle timeouts can be set individually for the client and the server. They con-
trol how long an idle connection, i.e. a connection that has no pending replies, will stay
open. The corresponding properties arejacorb.connection.client.idle timeout and
jacorb.connection.server.timeout and take their values as milliseconds. If not set, con-
nections will stay open indefinitely (or until the OS decides to close them).

Request timingcontrols how long an individual request may take to complete. The programmer can
specify this using QoS policies, discussed in chapter16.

17.2 Connection Management

When a client wants to invoke a remote object, it needs to send the request over a connection to the server.
If the connection isn’t present, it has to be created. In JacORB, this will only happen once for every
combination of host name and port. Once the connection is established, all requests and replies between
client and server will use the same connection. This saves resources while adding a thin layer of necessary
synchronization, and is the recommended approach of the OMG. Occasionally people have requested to
allow for multiple connections to the same server, but nobody has yet presented a good argument that
more connections would speed up things considerably.

On the server side, the propertyjacorb.connection.max server transports allows to
set the maximum number of TCP/IP connections that will be listened on for requests. When using a
network sniffer or tools like netstat, more inbound TCP/IP connections than the configured number may

100 Connection Management and Connection Timeouts

be displayed. This is for the following reason: Whenever the connection limit is reached, JacORB tries
to close existing idle connections (see the subsection below). This is done on the thread that accepts the
new connections, so JacORB will not actively accept more connections. However, the ServerSocket is
initialized with a backlog of 20. This means that 20 more connections will be quasi-accepted by the OS.
Only the 21st will be rejected right away.

17.2.1 Basics and Design

Whenever there is the need to close an existing connection because of the connection limit, the ques-
tion arises on which of the connection to close. To allow for maximum flexibility, JacORB provides
the interfaceSelectionStrategy that allows for a custom way to select a connection to close.
Because selecting a connection usually requires some sort of statistical data about it, the interface
StatisticsProvider allows to implement a class that collects statistical data.

package org.jacorb.orb.giop;

public interface SelectionStrategy
{

public ServerGIOPConnection
selectForClose(java.util.List connections);

}

public interface StatisticsProvider
{

public void messageChunkSent(int size);
public void flushed();
public void messageReceived(int size);

}

The interfaceSelectionStrategy has only the single method ofselectForClose() . This
is called by the classGIOPConnectionManager when a connection needs to be closed. The ar-
gument is aList containing objects of typeServerGIOPConnection . The call itself is syn-
chronized in theGIOPConnectionManager , so no additional synchronization has to be done by
the implementor ofSelectionStrategy . When examining the connections, the strategy can get
hold of theStatisticsProvider via the methodgetStatisticsProvider() of the class
GIOPConnection . The strategy implementor should take care only to return idle connections. While
the connection state is checked anyway while closing (it may have changed in the meantime), it seems
to be more efficient to avoid cycling through the connections. When no suitable connection is available,
the strategy may returnnull . TheGIOPConnectionManager will then wait for a configurable time,
and try again. This goes on until a connection can be closed.

The interfaceStatisticsProvider is used to collect statistical data about a connection
and provide it to theSelectionStrategy . Because the nature of this data may vary, there
is no standard access to the data via the interface. Therefore,StatisticsProvider and

17.2 Connection Management 101

SelectionStrategy usually need to be implemented together. Whenever a new connection is cre-
ated1, a newStatisticsProvider object is instanciated and stored with theTransport 2. The
StatisticsProvider interface is oriented along the mode of use of theTransport . For efficiency
reasons, messages are not sent as one big byte array. Instead, they are sent piecewise over the wire. When
such a chunk is sent, the methodmessageChunkSent(int size) will be called. After the message
has been completely sent, methodflush() is called. This whole process is synchronized, so all consec-
utive messageChunkSent s until a flush() form a single message. Therefore, no synchronization
on this level is necessary. However, access to gathered statistical data by theSelectionStrategy is
concurrent, so care has to be taken. Receiving messages is done only on the whole, so there exists only one
method,messageReceived(int size) , to notify theStatisticsProvider of such an event.

JacORB comes with two pre-implemented strategies: least frequently
used and least recently used. LFU and LRU are implemented by the
classes org.jacorb.orb.giop.L[F|R]USelectionStrategyImpl and
org.jacorb.orb.giop. L[F|R]UStatisticsProviderImpl .

17.2.2 Configuration

To configure connection management, the following properties are provided:

jacorb.connection.max server transports This property sets the maximum number of
TCP/IP connections that will be listened on by the server–side ORB.

jacorb.connection.wait for idle interval This property sets the interval to wait until the
next try is made to find an idle connection to close. Value is in microseconds.

jacorb.connection.selection strategy class This property sets theSelection-
Strategy .

jacorb.connection.statistics provider class This property sets theStatistics-
Provider .

jacorb.connection.delay close If turned on, JacORB will delay closing of TCP/IP connec-
tions to avoid certain situations, where message loss can occur. See also section17.2.3.

17.2.3 Limitations

No sunshine without rain. When trying to close a connection, it is first checked that the connection is idle,
i.e. has no pending messages. If this is the case, a GIOP CloseConnection message is sent, and the TCP/IP
connection is closed. Under high load, this can lead to the following situation:

1. Server sends the CloseConnection message.

1Currently, connection management is only implemented for the server side. Therefore, only accepted
ServerGIOPConnections s will get aStatisticsProvider

2This is actually only done when aStatisticsProvider is configured

102 Connection Management and Connection Timeouts

2. Server closes the TCP/IP connection.

3. The client sends a new request into the connection, because it hasn’t yet read and acted on the
CloseConnection message.

4. The server–side OS will send a TCP RST, which cancels out the CloseConnection message.

5. The client finds the connection closed and must consider the request lost.

To get by this situation, JacORB takes the following approach. Instead of closing the connection
right after sending the CloseConnection message, we delay closing and wait for the client to close
the connection. This behaviour is turned off by default, but can be enabled by setting the property
jacorb.connection.delay close to “yes”. When non-JacORB clients are used care has to be
taken that these ORBs do actively close the connection upon receiving a CloseConnection message.

18 Extensible Transport Framework

The Extensible Transport Framework (ETF), which JacORB implements, allows you to plug in other
transport layers besides the standard IIOP (TCP/IP) protocol1.

To use an alternative transport, you need to (a) implement it as a set of Java classes following the ETF
specification, and (b) tell JacORB to use the new transport instead of (or alongside with) the standard IIOP
transport. We cover both steps below.

18.1 Implementing a new Transport

The interfaces that an ETF-compliant transport must implement are described in the ETF specification,
and there is thus no need to repeat that information here. JacORB’s default IIOP transport, which is
realized in the packageorg.jacorb.orb.iiop , can also serve as a starting point for implementing
your own transports.

For each transport, the following interfaces must be implemented (defined inETF.idl , the package
is org.omg.ETF):

Profile encapsulates addressing information for this transport

Listener server-side communication endpoint, waits for incoming connections and passes them up to
the ORB

Connection an actual communication channel for this transport

Factories contains factory methods for the above interfaces

The Handle interface from the ETF package is implemented in the ORB (by the class
org.jacorb.orb.BasicAdapter), not by individual transports. There is currently no support in
JacORB for the optional zero-copy mechanism; the interfaceConnectionZeroCopy therefore needn’t
be implemented.

On the server side, theListener must pass incoming connections up to the ORB using the “Handle”
mechanism; theaccept() method needn’t be implemented. Once aConnection has been passed up
to the ORB, it will never be “returned” to theListener again. The methodcompleted data() in

1At the time of this writing (July 2003), ETF is still a draft standard (OMG TC document mars/2003-02-01).

104 Extensible Transport Framework

theListener interface therefore needn’t be implemented, and neither should theListener ever call
Handle.signal data available() or Handle.closed by peer() (these methods throw a
NOIMPLEMENTexception in JacORB).

At the time of this writing (July 2003), there is still uncertainty in ETF about how server-specific
Profiles (as returned byListener.endpoint() , for example) should be turned into object-specific
ones for inclusion into IORs. We have currently added three new operations to theProfile interface to
resolve this issue, see JacORB’s version ofETF.idl for details.

18.2 Configuring Transport Usage

You tell JacORB which transports it should use by listing the names of theirFactories classes in the
propertyjacorb.transport.factories . In the standard configuration, this property contains only
org.jacorb.orb.iiop.IIOPFactories , theFactories class for the standard IIOP transport.
The property’s value is a comma-separated list of fully qualified Java class names; each of these classes
must be found somewhere on the CLASSPATH that JacORB is started with. For example:

jacorb.transport.factories = my.transport.Factories, org.jacorb.orb.iiop.IIOPFactories

By default, a JacORB server creates listeners for each transport listed in the above property, and
publishes profiles for each of these transports in any IOR it creates. The order of profiles within an IOR is
the same as that of the transports in the property.

If you don’t want your servers to listen on each of these transports (e.g. because you want some of
your transports only to be used for client-side connections), you can specify the set of actual listeners in
the propertyjacorb.transport.server.listeners . The value of this property is a comma-
separated list of numeric profile tags, one for each transport that you want listeners for, and which you
want published in IOR profiles. The numeric value of a transport’s profile tag is the value returned by the
implementation ofFactories.profile tag() for that transport. Standard IIOP has profile tag 0
(TAGINTERNET IOP). Naturally, you can only specify profile tag numbers here for which you have a
corresponding entry injacorb.transport.factories .

So, to restrict your server-side transports to standard IIOP, you would write:

jacorb.transport.server.listeners = 0

On the client side, the ORB must decide which of potentially many transports it should use to contact a
given server. The default strategy is that for each IOR, the client selectsthe first profile for which there is a
transport implementation available at the client side(specified injacorb.transport.factories).
Profiles for which the client has no transport implementation are skipped.

Note that this is a purely static decision, based on availability of an implementation. JacORB does not
attempt to actually establish a transport connection in order to find out which transport can be used. Also,
should the selected transport fail, JacORB does not “fall back” to the next transport in the list. (This is
because JacORB opens connections lazily, only when the first actual data is being sent.)

18.2 Configuring Transport Usage 105

You can customize this strategy by providing your own implementation
of org.jacorb.orb.ProfileSelector , and specifying it in the property
jacorb.transport.client.selector . The interface ProfileSelector requires a
single method,

public Profile selectProfile (List profiles,
ClientConnectionManager ccm);

For each IOR, this method receives a list of all profiles from the IOR for which the client has a
transport implementation, in the order in which they appear in the IOR. The method should select one
profile from this list and return it; this profile will then be used for communication with the server.

To help with the decision, JacORB’sClientConnectionManager is passed as an additional
parameter. The method implementation can use it to check whether connections with a given transport,
or to a given server, have already been made; it can also try and pre-establish a connection using a given
transport and store it in theClientConnectionManager for later use. (See the JacORB source code
to find out how to deal with theClientConnectionManager .)

The defaultProfileSelector does not use theClientConnectionManager , it simply re-
turns the first profile from the list, unconditionally. To let JacORB use your own implementation of the
ProfileSelector interface, specify the fully qualified classname in the property:

jacorb.transport.client.selector=my.pkg.MyProfileSelector

106 Extensible Transport Framework

19 Security Attribute Service

The Security Attribute Service (SAS) is part of the Common Secure Interoperability Specification, Version
2 (CSIv2) CORBA specification. It is defined in the Secure Interoperability chapter (chapter 24) of the
CORBA 3.0.2 Specification.

19.1 Overview

The SAS specification defines the interchange between a Client Security Service (CSS) and a Target
Security Service (TSS) for the exchange of security authentication and authorization elements. This in-
formation is exchanged in the Service Context of the GIOP request and reply messages. The SAS may be
used in conjunction with SSL to provide privacy of the messages being sent and received.

The SAS service is implemented as a series of standard CORBA interceptors, one for the CSS and one
for the TSS. The service also uses a user specified SAS context class to support different authentication
mechanisms, such as GSSUP and Kerberos.

The SAS service is activated based on entries in the JacORB properties file and CORBA Properties
assigned to the POA.

The following is a part of the JacORB properties file that is used by the SAS.

##
#
SAS configuration
#
##

jacorb.SAS.log.verbosity=INFO
jacorb.SAS.CSS.log.verbosity=INFO
jacorb.SAS.TSS.log.verbosity=INFO

This option defines the specific SAS context generator/validator
Currently supported contexts include:
GssUpContext - Uses GSSUP security
KerberosContext - uses Kerberos security
At least one context must be selected for SAS support
jacorb.security.sas.contextClass=org.jacorb.security.sas.GssUpContext
#jacorb.security.sas.contextClass=org.jacorb.security.sas.KerberosContext

This initializer installs the SAS interceptors
Comment out this line if you do not want SAS support
org.omg.PortableInterceptor.ORBInitializerClass.SAS=org.jacorb.security.sas.SASInitializer

108 Security Attribute Service

This option is used for GSSUP security and sets up the GSS Provider
Comment out this line if you are not using GSS UP authentication
org.omg.PortableInterceptor.ORBInitializerClass.GSSUPProvider=org.jacorb.security.sas.GSSUPProviderInitializer

19.2 GSSUP Example

The GSSUP (GSS Username/Password) example demonstrates the simplest usage of the SAS service.
In this example, username and password pairs are send via the SAS service. The client registers its
username and password with the GSSUP Context which is later used CSS interceptor to generate the
user’s authentication information. The TSS retrieves the username and password without validating them.
It is assumed by the TSS that the username and password are correct and/or will be further validated by a
later interceptor or application code.

The following describes a SAS example using GSSUP.

19.2.1 GSSUP IDL Example

module demo{
module sas{

interface SASDemo{
void printSAS();

};
};

};

The IDL contains a single interface. This interface is used to print out the user principal sent and
received by the SAS service.

19.2.2 GSSUP Client Example

The following is a sample GSSUP client.

package demo.sas;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;

import org.jacorb.security.sas.GssUpContext;
import org.omg.CORBA.ORB;

public class GssUpClient {
public static void main(String args[]) {

if (args.length != 3) {
System.out.println("Usage: java demo.sas.GssUpClient <ior_file> <username> <password>");
System.exit(1);

}

try {

19.2 GSSUP Example 109

// set security credentials
GssUpContext.setUsernamePassword(args[1], args[2]);

// initialize the ORB.
ORB orb = ORB.init(args, null);

// get the server
File f = new File(args[0]);
if (!f.exists()) {

System.out.println("File " + args[0] + " does not exist.");
System.exit(-1);

}
if (f.isDirectory()) {

System.out.println("File " + args[0] + " is a directory.");
System.exit(-1);

}
BufferedReader br = new BufferedReader(new FileReader(f));
org.omg.CORBA.Object obj = orb.string_to_object(br.readLine());
br.close();
SASDemo demo = SASDemoHelper.narrow(obj);

//call single operation
demo.printSAS();
demo.printSAS();
demo.printSAS();

System.out.println("Call to server succeeded");
} catch (Exception ex) {

ex.printStackTrace();
}

}
}

The key to the client is the call to:

GssUpContext.setUsernamePassword(args[1], args[2]);

This call registers the client’s username and password with the GSSUP context. This information will
then later be used by the CSS interceptor as the user’s authentication information.

19.2.3 GSSUP Target Example

The following is a sample GSSUP target.

package demo.sas;

import java.io.FileWriter;
import java.io.PrintWriter;

import org.jacorb.sasPolicy.SASPolicyValues;
import org.jacorb.sasPolicy.SAS_POLICY_TYPE;
import org.jacorb.sasPolicy.SASPolicyValuesHelper;
import org.omg.PortableServer.IdAssignmentPolicyValue;
import org.omg.PortableServer.LifespanPolicyValue;
import org.omg.PortableServer.POA;
import org.omg.CORBA.ORB;
import org.omg.CORBA.Any;
import org.omg.CSIIOP.EstablishTrustInClient;

110 Security Attribute Service

public class GssUpServer extends SASDemoPOA {

private ORB orb;

public GssUpServer(ORB orb) {
this.orb = orb;

}

public void printSAS() {
try {

org.omg.PortableInterceptor.Current current = (org.omg.PortableInterceptor.Current)orb.resolve_initial_references("PICurrent");
org.omg.CORBA.Any anyName = current.get_slot(org.jacorb.security.sas.SASInitializer.sasPrincipalNamePIC);
if(anyName.type().kind().value() == org.omg.CORBA.TCKind._tk_null) {

System.out.println("Null Name");
} else {

String name = anyName.extract_string();
System.out.println("printSAS for user " + name);

}
} catch (Exception e) {

System.out.println("printSAS Error: " + e);
}

}

public static void main(String[] args) {
if (args.length != 1) {

System.out.println("Usage: java demo.sas.GssUpServer <ior_file>");
System.exit(-1);

}

try {
// initialize the ORB and POA.
ORB orb = ORB.init(args, null);
POA rootPOA = (POA) orb.resolve_initial_references("RootPOA");
org.omg.CORBA.Policy [] policies = new org.omg.CORBA.Policy[3];
policies[0] = rootPOA.create_id_assignment_policy(IdAssignmentPolicyValue.USER_ID);
policies[1] = rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT);
Any sasAny = orb.create_any();
SASPolicyValuesHelper.insert(sasAny, new SASPolicyValues(EstablishTrustInClient.value, EstablishTrustInClient.value, true));
policies[2] = orb.create_policy(SAS_POLICY_TYPE.value, sasAny);
POA securePOA = rootPOA.create_POA("SecurePOA", rootPOA.the_POAManager(), policies);
rootPOA.the_POAManager().activate();

// create object and write out IOR
GssUpServer server = new GssUpServer(orb);
securePOA.activate_object_with_id("SecureObject".getBytes(), server);
org.omg.CORBA.Object demo = securePOA.servant_to_reference(server);
PrintWriter pw = new PrintWriter(new FileWriter(args[0]));
pw.println(orb.object_to_string(demo));
pw.flush();
pw.close();

// run the ORB
orb.run();

} catch (Exception e) {
e.printStackTrace();

}
}

}

19.3 Kerberos Example 111

19.3 Kerberos Example

The Kerberos example demonstrates how to integrate the use of a kerberos service to provide authenti-
cation credentials to the SAS service. In this example, the Java(TM) Authentication and Authorization
Service (JAAS) is used to perform the Kerberos login and to return the principal and Kerberos ticket. The
actual username and password may either be entered by the user or derived from the current user’s Ker-
beros login session. For Windows 2000 Active Directory networks, this means that the user’s credentials
can be automatically obtained from the Windows login.

The following describes a SAS example using Kerberos.

19.3.1 Kerberos IDL Example

module demo{
module sas{

interface SASDemo{
void printSAS();

};
};

};

The IDL contains a single interface. This interface is used to print out the user principal sent and
received by the SAS service.

19.3.2 Kerberos Client Example

The following is a sample Kerberos client.

package demo.sas;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.security.Principal;
import java.security.PrivilegedAction;

import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;

import org.omg.CORBA.ORB;

public class KerberosClient {
private static Principal myPrincipal = null;
private static Subject mySubject = null;
private static ORB orb = null;

public KerberosClient(String args[]) {

try {
// initialize the ORB.
orb = ORB.init(args, null);

112 Security Attribute Service

// get the server
File f = new File(args[0]);
if (!f.exists()) {

System.out.println("File " + args[0] + " does not exist.");
System.exit(-1);

}
if (f.isDirectory()) {

System.out.println("File " + args[0] + " is a directory.");
System.exit(-1);

}
BufferedReader br = new BufferedReader(new FileReader(f));
org.omg.CORBA.Object obj = orb.string_to_object(br.readLine());
br.close();
SASDemo demo = SASDemoHelper.narrow(obj);

//call single operation
demo.printSAS();
demo.printSAS();
demo.printSAS();

System.out.println("Call to server succeeded");
} catch (Exception ex) {

ex.printStackTrace();
}

}

public static void main(String args[]) {
if (args.length != 3) {

System.out.println("Usage: java demo.sas.KerberosClient <ior_file> <username> <password>");
System.exit(1);

}

// login - with Kerberos
LoginContext loginContext = null;
try {

JaasTxtCalbackHandler txtHandler = new JaasTxtCalbackHandler();
txtHandler.setMyUsername(args[1]);
txtHandler.setMyPassword(args[2].toCharArray());
loginContext = new LoginContext("KerberosClient", txtHandler);
loginContext.login();

} catch (LoginException le) {
System.out.println("Login error: " + le);
System.exit(1);

}
mySubject = loginContext.getSubject();
myPrincipal = (Principal) mySubject.getPrincipals().iterator().next();
System.out.println("Found principal " + myPrincipal.getName());

// run in privileged mode
final String[] finalArgs = args;
try {

Subject.doAs(mySubject, new PrivilegedAction() {
public Object run() {

try {
KerberosClient client = new KerberosClient(finalArgs);
orb.run();

} catch (Exception e) {
System.out.println("Error running program: "+e);

}
System.out.println("Exiting privileged operation");
return null;

}
});

} catch (Exception e) {
System.out.println("Error running privileged: "+e);

19.3 Kerberos Example 113

}
}

}

The CSS uses JAAS to logon and return the user’s Kerberos credentials. The CSS must then run
the rest of the application as a PrivilegedAction using the logged on credentials. This allows the CSS
interceptor to retrieve the Kerberos ticket from the logon session.

The following is the JAAS logon configuration for the CSS:

KerberosClient
{

com.sun.security.auth.module.Krb5LoginModule required storeKey=true useTicketCache=true debug=true;
};

19.3.3 Kerberos Target Example

The following is a sample Kerberos target.

package demo.sas;

import java.io.FileWriter;
import java.io.PrintWriter;
import java.security.Principal;
import java.security.PrivilegedAction;

import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;

import org.jacorb.sasPolicy.SASPolicyValues;
import org.jacorb.sasPolicy.SAS_POLICY_TYPE;
import org.jacorb.sasPolicy.SASPolicyValuesHelper;
import org.omg.PortableServer.IdAssignmentPolicyValue;
import org.omg.PortableServer.LifespanPolicyValue;
import org.omg.PortableServer.POA;
import org.omg.CORBA.ORB;
import org.omg.CORBA.Any;
import org.omg.CSIIOP.EstablishTrustInClient;

public class KerberosServer extends SASDemoPOA {
private static Principal myPrincipal = null;
private static Subject mySubject = null;
private ORB orb;

public KerberosServer(ORB orb) {
this.orb = orb;

}

public void printSAS() {
try {

org.omg.PortableInterceptor.Current current = (org.omg.PortableInterceptor.Current) orb.resolve_initial_references("PICurrent");
org.omg.CORBA.Any anyName = current.get_slot(org.jacorb.security.sas.SASInitializer.sasPrincipalNamePIC);
String name = anyName.extract_string();
System.out.println("printSAS for user " + name);

} catch (Exception e) {
System.out.println("printSAS Error: " + e);

}

114 Security Attribute Service

}

public KerberosServer(String[] args) {
try {

// initialize the ORB and POA.
orb = ORB.init(args, null);
POA rootPOA = (POA) orb.resolve_initial_references("RootPOA");
org.omg.CORBA.Policy [] policies = new org.omg.CORBA.Policy[3];
policies[0] = rootPOA.create_id_assignment_policy(IdAssignmentPolicyValue.USER_ID);
policies[1] = rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT);
Any sasAny = orb.create_any();
SASPolicyValuesHelper.insert(sasAny, new SASPolicyValues(EstablishTrustInClient.value, EstablishTrustInClient.value, true));
policies[2] = orb.create_policy(SAS_POLICY_TYPE.value, sasAny);
POA securePOA = rootPOA.create_POA("SecurePOA", rootPOA.the_POAManager(), policies);
rootPOA.the_POAManager().activate();

// create object and write out IOR
securePOA.activate_object_with_id("SecureObject".getBytes(), this);
org.omg.CORBA.Object demo = securePOA.servant_to_reference(this);
PrintWriter pw = new PrintWriter(new FileWriter(args[0]));
pw.println(orb.object_to_string(demo));
pw.flush();
pw.close();

} catch (Exception e) {
e.printStackTrace();

}
}

public static void main(String[] args) {
if (args.length != 2) {

System.out.println("Usage: java demo.sas.KerberosServer <ior_file> <password>");
System.exit(-1);

}

// login - with Kerberos
LoginContext loginContext = null;
try {

JaasTxtCalbackHandler cbHandler = new JaasTxtCalbackHandler();
cbHandler.setMyPassword(args[1].toCharArray());
loginContext = new LoginContext("KerberosService", cbHandler);
loginContext.login();

} catch (LoginException le) {
System.out.println("Login error: " + le);
System.exit(1);

}
mySubject = loginContext.getSubject();
myPrincipal = (Principal) mySubject.getPrincipals().iterator().next();
System.out.println("Found principal " + myPrincipal.getName());

// run in privileged mode
final String[] finalArgs = args;
try {

Subject.doAs(mySubject, new PrivilegedAction() {
public Object run() {

try {
// create application
KerberosServer app = new KerberosServer(finalArgs);
app.orb.run();

} catch (Exception e) {
System.out.println("Error running program: "+e);

}
return null;

}
});

} catch (Exception e) {

19.3 Kerberos Example 115

System.out.println("Error running privileged: "+e);
}

}
}

The TSS uses JAAS to logon and return the user’s Kerberos credentials. The logon principal to use
is defined in the JAAS login configuration file. The TSS must then run the rest of the application as a
PrivilegedAction using the logged on credentials. This allows the TSS interceptor to retrieve the Kerberos
ticket from the logon session.

The following is the JAAS logon configuration for the TSS:

KerberosService
{

com.sun.security.auth.module.Krb5LoginModule required storeKey=true principal="testService@OPENROADSCONSULTING.COM" debug=true;
};

116 Security Attribute Service

20 The JacORB Notification Service

The JacORB Notification Service is a partial implementation of the Notification Service specified by the
OMG.

20.1 Installation

If you’re using JDK 1.3 and want to use the JacORB Notification Service you’ll need to download
the additional library gnu.regexp fromhttp://www.cacas.org/java/gnu/regexpand put it in your class-
path. This is necessary because the JacORB Notification Service depends on regular expressions. This
functionality is available in the JDK since version 1.4. Alternatively you can download Jakarta Regexp
http://jakarta.apache.org/regexp.

20.2 Running the Notification Service

Before the JacORB Notification Service can be accessed a server process must be started. Starting the
notification server is done by running

$ ntfy [-printIOR] [-printCorbaloc] [-writeIOR filename]
[-registerName nameID [. nameKind]] [-port oaPort] [-channels channels]
[-help]

-printIOR print the IOR to STDOUT
-printCorbaloc print the Corbaloc to STDOUT
-writeIORfilename write the IOR to a file
-registerNamenameId[.nameKind] make a Name Service entry for the EventChannelFactory.

The Notification Service resolves the Name Service by
calling
resolve initial references("NameService") .
Ensure that your environment is set up properly.

-portoaport start the Notification Service on the specified port.
-channelschannels create a number EventChannels.

http://www.cacas.org/java/gnu/regexp
http://jakarta.apache.org/regexp

118 The JacORB Notification Service

20.2.1 Running as a NT Service or a UNIX Daemon

With a little help fromthe Java Service Wrapperit is easy to run the JacORB notification service as a
Windows Service or as a UNIX daemon.

Note for JDK 1.3 Users

As noted if you are running JDK 1.3 you need to provide an additional library. If you use the Wrapper
you also need to add a classpath entry to the Wrapper configuration file.

Edit bin/NotifyService-Wrapper.conf and add a classpath entry:

Java Classpath (include wrapper.jar) Add class path elements as
needed starting from 1
wrapper.java.classpath.1=../lib/wrapper-3.0.3.jar
...
wrapper.java.classpath.6=../lib/avalon-framework-4.1.5.jar
wrapper.java.classpath.7=../lib/gnu.regexp.jar

Installing and Running as a NT Service

The necessary wrapper configuration files are preconfigured in theJacORB/bin directory.

The notification service can be installed as a service by double clicking on the
NotifyService-Install-NT.bat batch file which is located in theJacORB/bin direc-
tory. Alternatively you can open a Command Window and then run the install script from the command
prompt.

C:\JacORB\bin>NotifyService-Install-NT.bat
wrapper | JacORB Notification Service installed.

Once the service has been installed, it can be started by opening up the Service Control Panel, selecting
the service, and then pressing the start button.

The service can also be started and stopped from within a Command Window by using thenet
start JacORB-Notify andnet stop JacORB-Notify commands, or by passing commands
to the Wrapper.exe executable.

The wrapper is set up to start the JacORB Notification Service whenever the machine is rebooted.

The service can be uninstalled by running theNotifyService-Uninstall-NT.bat batch file.

See the Windows specificwrapper documentationfor more details.

Installing and Running as a UNIX Daemon

JacORB is shipped with ash script which can be used to start and stop the JacORB Notification Service
controlled by the Java Service Wrapper.

http://wrapper.tanukisoftware.org
http://wrapper.tanukisoftware.org/doc/english/launch-win.html

20.2 Running the Notification Service 119

First you need to download the appropiate binary for your system from
http://wrapper.tanukisoftware.org. The Java Service Wrapper is supported on Windows, Linux,
Solaris, AIX, HP-UX, Macintosh OS X, DEC OSF1, FreeBSD, and SGI Irix systems (Note: You don’t
need to download anything if you are running Windows. All necessary stuff is shipped with the JacORB
distribution).

Install the Java Service to a appropiate place by unzipping it. Addwrapper-dir /bin
to your PATH variable. If you don’t want to modify your PATH variable put a link to
wrapper-dir /bin/wrapper in one of the directories that’s already in your PATH environment (e.g.
ln -s /usr/local/wrapper/bin/wrapper /usr/bin).

Ensure that the shell-scriptJacORB/bin/ntfy-wrapper has the executable bit set. Note that the
sh script will attempt to create a pid file in the directory specified by the propertyPIDDIR in the script.
If the user used to launch the Wrapper does not have permission to write to this directory then this will
result in an error. An alternative that will work in most cases is to write the pid file to another directory.
To make this change, edit the sh script and change the following line:

PIDDIR="."

to something more appropiate:

PIDDIR="/var/run"

Running in the console The JacORB notification service can now be run by simply executing
bin/ntfy-wrapper console .

When running using the console command, output from the notification service will be visible in the
console.

The notification service can be terminated by hitting CTRL-C in the command window. This will
cause the Wrapper to shut down the service cleanly.

If you omit the command the scripts prints the available commands. The script accepts the commands
start, stop, restart and dump. The start, stop, and restart commands are common to most daemon scripts
and are used to control the wrapper and the notification service as a daemon process. The console com-
mand will launch the wrapper in the current shell, making it possible to kill the application with CTRL-C.
The final command, dump, will send a kill -3 signal to the wrapper causing the its JVM to do a full thread
dump.

Running as a Daemon Process The application can be run as a detatched daemon process by
executing the script using thestart command.

When running using the start command, output from the JVM will only be visible by viewing the log-
file NotifyService-Wrapper.log using tail -f NotifyService-Wrapper.log .
The location of the logfile can be configured in the wrapper configuration file
bin/NotifyService-Wrapper.conf

http://wrapper.tanukisoftware.org

120 The JacORB Notification Service

Because the application is running as a detatched process, it can not be terminated using CTRL-C and
will continue to run even if the console is closed.

To stop the application rerun the script using thestopcommand.

Installing The Notification Service To Start on Reboot This is system specific. See the
UNIX specificwrapper documentationfor instructions for some platforms.

20.3 Accessing the Notification Service

Configuring a default notification service as the ORB’s default is done by adding the URL that points
to the service to the properties files.jacorb properties . A valid URL can be obtained in various
ways:

1. By specifying the option-printIOR as you start the notification service a stringified IOR is
printed out to the console. From there you can copy it to a useful location.

2. Usually the stringified IOR makes most sense inside a file. Use the option-writeIOR
<filename> to write the IOR to the specified file.

3. A more compact URL can be obtained by using the option-printCorbaloc . In con-
junction with the option-port you can use the simplified corbaloc: URL of the form
corbaloc::ip-address:port/NotificationService . This means all you need to
know to construct an object reference to your notification service is the IP address of the machine
and the port number the server process ist listening on (the one specified using-port).

Add the propertyORBInitRef.NotificationService to your properties file. The value can
be a corbaloc: URL or alternatively the file name where you saved the IOR.

The JacORB notification service is accessed using the standard CORBA defined interface:

// get a reference to the notification service
ORB orb = ORB.init(args, null);
org.omg.CORBA.Object obj;
obj = orb.resolve_initial_references("NotificationService");
EventChannelFactory ecf = EventChannelHelper.narrow(o);
IntHolder ih = new IntHolder();
Property[] p1 = new Property[0];
Property[] p2 = new Property[0];
EventChannel ec = ecf.create_channel(p1, p2, ih);
...

http://wrapper.tanukisoftware.org/doc/english/launch-nix.html

20.4 Configuration 121

20.4 Configuration

Following is a brief description of the properties that control Notification Service behaviour.

The Notification Service uses up to three Thread Pools with a configurable size. The first Thread Pool
is used to process the filtering of the Messages. The second Thread Pool is used to deliver the Messages
to the Consumers. The third Thread Pool us used to pull Messages from PullSuppliers.

Table 20.1: Notification Service Properties

Property Description Type Default
filter.
thread_pool_size 1

This is the Size of the Thread Pool used to pro-
cess the filters. Increasing this value on a Mul-
tiprocessor machine or if Filters are on a differ-
ent machine than the Channel could increase the
Filtering Performance as multiple events can be
processed concurrently.

int ≥ 0 2

proxysupplier.
thread_pool_size

This is the Size of the Thread Pool
used to deliver the Messages to the
Consumers. By using the property
proxysupplier.threadpolicy 2 it is
also possible to use one Thread per ProxySup-
plier.

int ≥ 0 4

proxyconsumer.
thread_pool_size

Specifies the Size of the Thread Pool used to pull
Messages from PullSuppliers

int >= 0 2

proxysupplier.
threadpolicy

Specify which thread policy the ProxySuppliers
should use to deliver the Messages to its Con-
sumers. Valid values are:

ThreadPool a fixed number of threads is
used. See propertyproxysupplier.
thread_pool_size .

ThreadPerProxy Each ProxySupplier uses its
own thread.

string Thread-
Pool

supplier.
poll_intervall

Specifies how often Messages should be pulled
from a PullSupplier. The value specifies the in-
tervall between two pull-Operations.

milli-
seconds

1000

1All notification service properties share the common prefixjacorb.notificationwhich is omitted here to save some
space

2also abbreviated.

122 The JacORB Notification Service

Table 20.1: Notification Service Properties

Property Description Type Default
supplier. max_number Specify the maximum number of Suppliers that

may be connected to a Channel at a time. If a
Supplier tries to connect, while this limit is ex-
ceeded, AdminLimitExceeded is raised. Note
that this property can also be set programatically
via theset admin operation.

int > 0 maximum
int value

consumer max_number Specify the maximum number of Consumers that
may be connected to a Channel at a time. If
a Consumer tries to connect, while this limit is
exceeded, AdminLimitExceeded is raised. Note
that this property can also be set programatically
via theset admin operation.

int > 0 maximum
int value

max_events_
per_consumer

Specifies how many Events a ProxySupplier at
most should queue for a consumer. If this number
is exceeded Events are discarded according to the
DiscardPolicy configured for the ProxySupplier.

int > 0 100

max_batch_size Specifies the maximal number of Messages a Se-
quencePushSupplier should queue before a deliv-
ery to its connected SequencedPushConsumer is
forced.

int >= 0 1

order_policy Specify how events that are queued should be or-
dered. Valid values are:

• AnyOrder

• PriorityOrder

• DeadlineOrder

• FifoOrder

string Priority-
Order

discard_policy Specifies which Events are discarded if more
than the maximal number of events are queued
for a consumer. Valid values are:

• AnyOrder

• PriorityOrder

• DeadlineOrder

• FifoOrder

• LifoOrder

string Priority-
Order

20.4 Configuration 123

Table 20.1: Notification Service Properties

Property Description Type Default
consumer.
backout_interval

After a delivery to a Consumer has failed the
Channel will pause delivery to that Consumer for
a while before retrying. This property specifies
how long a consumer should stay disabled.

milli-
seconds

1000

consumer.
error_threshold

Each failed delivery to a consumer increments
an errorcounter. If this errorcounter exceeds
the specified value the consumer is disconnected
from the channel.

int >= 0 3

default_filter_factory Specify which FilterFactory
(CosNotifyFilter::FilterFactory)
the attribute EventChannel::-
default filter factory should be
set to. Default value isbuiltin. This special
value implies that a FilterFactory will be created
during start of the EventChannel. Its possible to
set this property to a URL that points to another
CosNotifyFilter::FilterFactory
object. In this case no FilterFactory is started by
the EventChannel. The URL is resolved by a
call toORB::string to object .

URL builtin

proxy.destroy_
causes_disconnect

Specify if a destroyed Proxy should call the dis-
connect operation of its consumer/supplier.

boolean on

124 The JacORB Notification Service

21 JacORB utilities

In this chapter we briefly explain the executables that come with JacORB. These include the IDL-compiler,
a utility to decode IORs and print their components, the JacORB name server, a utility to test a remote
object’s liveness, etc.

21.1 idl

The IDL compiler parses IDL files and maps type definitions to Java classes as specified by the OMG
IDL/Java language mapping. For example, IDL interfaces are translated into Java interfaces, and typedefs,
structs, const declarations etc. are mapped onto corresponding Java classes. Additionally, stubs and
skeletons for all interface types in the IDL specification are generated.

Compiler Options

-h | help print help on compiler options
-v | version print compiler version information
-d dir root of directory tree for output (default: current directory)
-syntax syntax check only, no code generation
-Dx define preprocessor symbol x with value 1
-Dx=y define preprocessor symbol x with value y
-Idir set include path for idl files
-Usymbol undefine preprocessor symbol
-W [1..4] debug output level (default is 1)
-all generate code for all IDL files, even included ones (default is off)

If you want to make sure that for a given IDL no code will
be generated even if this option is set, use the (proprietary) preprocessor
directive#pragma inhibit code generation .

-forceOverwrite generate Java code even if the IDL files have not
changed since the last compiler run (default is off)

-ami callback generate AMI reply handlers and sendc methods (default is off). See chapter15
-ami polling generate AMI poller and sendp methods (default is off). See chapter15
-backend classname use classname as compiler (code generator) backend. The default code generator

class isorg.jacorb.idl.javamapping.JavaMappingGeneratingVisitor
(c.f. API documentation). Custom generators must implement the interface

126 JacORB utilities

org.jacorb.idl.IDLTreeVisitor
-i2jpackage x:a.b.c replace IDL package name x by a.b.c in generated Java code

(e.g. CORBA:org.omg.CORBA)
-i2jpackagefile filenamereplace IDL package names using list from ¡filename¿.

Format as above.
-ir generate extra information required by the JacORB Interface Repository

(One extra file for each IDL module, and another additional file per IDL interface.)
(default is off)

-cldc10 Generate J2ME/CLDC1.0 compliant stubs
-nofinal generated Java code will contain no final class definitions, which

is the default to allow for compiler optimizations.
-uncheckednarrow use uncheckednarrow in generated code for IOR parameters in operations

(default is off). Generated helper classes contain marshalling code which, by default,
will try to narrow any object references to statically known interface type. This
may involve remote invocations to test a remote object’s type, thus incurring
runtime overhead to achieve static type safety. The -uncheckednarrow option
generates code that will not by statically type safe, but avoids remote tests
of an object’s type. If the type is not as expected, clients will experience
CORBA.BAD OPERATION exceptions at invocation time.

-noskel disables generation of POA skeletons (e.g., for client-side use)
-nostub disables generation of client stubs (for server-side use)
-sloppy forward allow forward declarations without later definitions

(useful only for separate compilation).
-sloppynames less strict checking of module name scoping (default: off)

CORBA IDL has a number of name resolution rules that are stricter than
necessary for Java (e.g., a struct member’s name identifier must not
equal the type name). The -sloppynames option relaxes checking of these
rules. Note that IDL accepted with this option will be rejected by other, conformant
IDL compilers!

-permissivermic tolerate dubious and buggy IDL generated by JDK’s rmic stub generator
(e.g., incorrectly empty inheritance clauses), includes -sloppynames.

The -i2jpackage switch can be used to flexibly redirect generated Java classes into packages.
Using this option, any IDL scope x can be replaced by one (or more) Java packages y. Specifying
-i2jpackage X:a.b.c will thus cause code generated for IDL definitions within a scope x to end up
in a Java packagea.b.c , e.g. an IDL identifierX::Y::ident will be mapped toa.b.c.y.ident
in Java. It is also possible to specify a file containing these mappings using the-i2jpackagefile
switch.

(The IDL parser was generated with Scott Hudson’s CUP parser generator. The LALR grammar for
the CORBA IDL is in the fileorg/jacorb/idl/parser.cup .)

21.2 ns 127

21.2 ns

JacORB provides a service for mapping names to network references. The name server itself is written in
Java like the rest of the package and is a straightforward implementation of the CORBA “Naming Service”
from Common Object Services Spec., Vol.1 [OMG97]. The IDL interfaces are mapped to Java according
to our Java mapping.

Usage

$ ns <filename> [<timeout>]

or

$ jaco jacorb.Naming.NameServer <filename> [<timeout>]

Example

$ ns /̃public html/NS Ref

The name server doesnot use a well known port for its service. Since clients cannot (and need not)
know in advance where the name service will be provided, we use a bootstrap file in which the name server
records an object reference to itself (itsInteroperable Object Referenceor IOR). The name of this bootstrap
file has to be given as an argument to thens command. This bootstrap file has to be available to clients
network-wide, so we demand that it be reachable via a URL — that is, there must be an appropriately
configured HTTP server in your network domain which allows read access to the bootstrap file over a
HTTP connection. (This implies that the file must have its read permissions set appropriately. If the
binding to the name service fails, please check that this is the case.) After locating the name service
through this mechanism, clients will connect to the name server directly, so the only HTTP overhead is in
the first lookup of the server.

The name bindings in the server’s database are stored in and retrieved from a file that is found in
the current directory unless the propertyjacorb.naming.db dir is set to a different directory name.
When the server starts up, it tries to read this file’s contents. If the file is empty or corrupt, it will be
ignored (but overridden on exit). The name server can only save its state when it goes down after a
specified timeout. If the server is interrupted (withCTRL-C), state information is lost and the file will not
contain any usable data.

If no timeout is specified, the name server will simply stay up until it is killed. Timeouts are specified
in milliseconds.

21.3 nmg

The JacORB NameManager, a GUI for the name service, can be started using thenmg command. The
NameManager then tries to connect to an existing name service.

128 JacORB utilities

Usage

$ nmg

21.4 lsns

This utility lists the contents of the default naming context. Only currently active servers that have reg-
istered are listed. The-r option recursively lists the contents of naming contexts contained in the root
context. If the graph of naming contexts contains cycles, trying to list the entire contents recursively will
not return...

Usage

$ lsns [-r]

Example

$ lsns
/grid.service

when only the server for the grid example is running and registered with the name server.

21.5 dior

JacORB comes with a simple utility to decode an interoperable object reference (IOR) in string form into
a more readable representation.

Usage

$ dior <IOR-string> | -f <filename>

Example

In the following example we use it to print out the contents of the IOR that the JacORB name server writes
to its file:

$ dior -f /̃public html/NS Ref

------IOR components-----
TypeId : IDL:omg.org/CosNaming/NamingContextExt:1.0

21.6 pingo 129

Profile Id : TAG_INTERNET_IOP
IIOP Version : 1.0
Host : 160.45.110.41
Port : 49435
Object key : 0x52 6F 6F 74 50 4F 41 3A 3A 30 D7 D1 91 E1 70 95 04

21.6 pingo

“Ping” an object using its stringified IOR. Pingo will callnon existent() on the object’s reference
to determine whether the object is alive or not.

Usage

$ pingo <IOR-string> | -f <filename>

21.7 ir

This command starts the JacORB Interface Repository, which is explained in chapter10.

Usage

$ ir <reppository class path> <IOR filename>

21.8 qir

This command queries the JacORB Interface Repository and prints out re–generated IDL for the repository
item denoted by the argument repository ID.

Usage

$ qir <reppository Id>

21.9 ks

This command starts the JacORB KeyStoreManager, which is explained in chapter12

130 JacORB utilities

Usage

$ ks

21.10 fixior

This command patches host and port information into an IOR file.

Usage

$ fixior <host> <port> <ior file>

Bibliography

[BVD01] Gerald Brose, Andreas Vogel, and Keith Duddy.Java Programming with CORBA. John Wiley
& Sons, 3rd edition, 2001.

[HV99] Michi Henning and Steve Vinoski.Advanced CORBA Programming with C++. Addison–
Wesley, 1999.

[OMG97] OMG. CORBAservices: Common Object Services Specification, November 1997.

[Sie00] Jon Siegel.CORBA 3 Fundamentals and Programming. Wiley, 2nd edition, 2000.

[Vin97] Steve Vinoski. Corba: Integrating diverse applications within distributed heterogeneous envi-
ronments.IEEE Communications Magazine, 14(2), February 1997.

[Vin98] Steve Vinoski. New features for corba 3.0.CACM, 41(10):44–52, October 1998.

	1 Introduction
	1.1 A Brief CORBA introduction
	1.2 Project History
	1.3 Support
	1.4 Contributing --- Donations
	1.5 Contributing --- Development
	1.6 Limitations, Feedback
	1.6.1 Feedback, Bug reports

	2 Installing JacORB
	2.1 Downloading JacORB
	2.2 Installation
	2.2.1 Requirements

	3 Configuration
	3.1 Properties
	3.1.1 Properties files
	3.1.2 Command-line properties
	3.1.3 Arguments to ORB.init()

	3.2 Common Configuration Options
	3.2.1 Initial references
	3.2.2 Logging

	3.3 Configuration Properties

	4 Getting Started
	4.1 JacORB development: an overview
	4.2 IDL specifications
	4.3 Generating Java classes
	4.4 Implementing the interface
	4.5 Writing the Server
	4.6 Writing a client
	4.6.1 The Tie Approach

	5 The JacORB Name Service
	5.1 Running the Name Server
	5.2 Accessing the Name Service
	5.3 Constructing Hierarchies of Name Spaces
	5.4 NameManager --- A simple GUI front-end to the Naming Service

	6 The server side: POA, Threads
	6.1 POA
	6.2 Threads

	7 Implementation Repository
	7.1 Overview
	7.2 Using the JacORB Implementation Repository
	7.3 Server migration
	7.4 A Note About Security

	8 Dynamic Management of Any Values
	8.1 Overview
	8.2 Interfaces
	8.3 Usage Constraints
	8.4 Creating a DynAny Object
	8.5 Accessing the Value of a DynAny Object
	8.6 Traversing the Value of a DynAny Object
	8.7 Constructed Types
	8.7.1 DynFixed
	8.7.2 DynEnum
	8.7.3 DynStruct
	8.7.4 DynUnion
	8.7.5 DynSequence
	8.7.6 DynArray

	8.8 Converting between Any and DynAny Objects
	8.9 Further Examples

	9 Objects By Value
	9.1 Example
	9.2 Factories

	10 Interface Repository
	10.1 Type Information in the IR
	10.2 Repository Design
	10.3 Using the IR

	11 The JacORB Appligator
	11.1 Appligator Functionality
	11.2 Using The Appligator
	11.2.1 Starting Appligator
	11.2.2 Client Configuration
	11.2.3 Appligator Configuration Appligator

	11.3 Applet Support
	11.3.1 Summary
	11.3.2 Applet Properties
	11.3.3 Appligator and Netscape/IE, appletviewer
	11.3.4 Examples

	11.4 Firewall Support
	11.4.1 Summary
	11.4.2 NAT Firewalls
	11.4.3 Security Considerations
	11.4.4 Use of SSH

	12 IIOP over SSL
	12.1 Re--Building JacORB's security libraries
	12.2 IAIK specific setup
	12.2.1 Setting up an IAIK key store
	12.2.2 Step--By--Step certificate creation

	12.3 Configuring SSL properties
	12.3.1 Client side configuration
	12.3.2 Server side configuration

	13 BiDirectional GIOP
	13.1 Setting up Bidirectional GIOP
	13.1.1 Setting the ORBInitializer property
	13.1.2 Creating the BiDir Policy

	13.2 Verifying that BiDirectional GIOP is used
	13.3 TAO interoperability

	14 Portable Interceptors
	15 Asynchronous Method Invocation
	16 Quality of Service
	16.1 Sync Scope
	16.2 Timing Policies

	17 Connection Management and Connection Timeouts
	17.1 Timeouts
	17.2 Connection Management
	17.2.1 Basics and Design
	17.2.2 Configuration
	17.2.3 Limitations

	18 Extensible Transport Framework
	18.1 Implementing a new Transport
	18.2 Configuring Transport Usage

	19 Security Attribute Service
	19.1 Overview
	19.2 GSSUP Example
	19.2.1 GSSUP IDL Example
	19.2.2 GSSUP Client Example
	19.2.3 GSSUP Target Example

	19.3 Kerberos Example
	19.3.1 Kerberos IDL Example
	19.3.2 Kerberos Client Example
	19.3.3 Kerberos Target Example

	20 The JacORB Notification Service
	20.1 Installation
	20.2 Running the Notification Service
	20.2.1 Running as a NT Service or a UNIX Daemon

	20.3 Accessing the Notification Service
	20.4 Configuration

	21 JacORB utilities
	21.1 idl
	21.2 ns
	21.3 nmg
	21.4 lsns
	21.5 dior
	21.6 pingo
	21.7 ir
	21.8 qir
	21.9 ks
	21.10 fixior

