
1 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

VRGOODIES

This document describes a set of user interface tools that have been developed in order to enhance the productivity of the
VisualWorks/VisualWave developer. These tools fall into the following categories:

• UI Building enhancements
• Form Generator
• UIDefiner upgrade

• UI Framework enhancements
• Subclasses of ApplicationModel that provide additional functionality

The Form Generator

This tool automates the production of stock user interface forms.

Its usage pattern is simple; a menu item in the class pane of the browser summons up the tool on the selected class. The tool comes up
with the name of the selected class shown, a proposed Form class name, and a proposed Form class category name. All of these fields
are editable. For the chosen class, all instance variables will appear in the leftmost list box. This box is a multi-selection list box,
while the rightmost one is single selection. Selected instance variables will be moved to the rightmost list box by using the >> button.
Variables may be moved back to the leftmost list box by using the << button. Variables in the rightmost list box will be used to create
the form.

Below the rightmost list box are the widget types supported by the tool. These are as follows:

String An input box widget
Text A Text Editor widget
Password An input box widget, formatted for passwords
Time An input box widget, formatted for Time objects
FixedPoint An input box widget, formatted for decimal numbers
Collection A List box widget
Radio Buttons One or more radio buttons
Symbol An input box widget, formatted for symbols
Number An input box widget, formatted for numbers
Date An input box widget, formatted for dates
Timestamp An input box widget, formatted for time stamps
Boolean A checkbox widget
Subcanvas An embedded subcanvas
Menu Button A menu button

Note that the formatting options vary by the selection; for all input field widgets, the menu button below the leftmost list box will
display a menu of appropriate formats (as in the standard Property Tool). For other widgets, this part of the UI will change as noted
below. Note that selecting a type or format will change the widget information for the selected variable immediately.

Collection Menu is disabled
Text Menu is disabled
Radio Buttons Radio button editor
Menu Buttons Menu Button Editor
Subcanvas Subcanvas Editor

2 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

Radio Button/Menu Button Editor

Add
Add #select value to the list.

Remove
Remove #select value from the list.

Save
Save information on radio button or menu button. This editor is used for both radio button and menu button editing. Edit
values are not saved until the #save button has been used.

Aspect
Name of the value model that will hold the selected value.

Select
The name of one of the options.

ListBox
List of current options that will be used to build the radio buttons or menu.

Subcanvas Editor

Canvas Class
Name of the ApplicationModel subclass to embed.

Canvas Spec
Name of the window specification to embed.

3 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

Save Info
Subcanvas information is not saved until this button is pressed.

Generating the interface

In order to generate an interface, the user must set at least the following information:

IFC Class
The class that is to be generated. If <use extended framework> is selected, then this class will be a subclass of
VRDetailForm. Otherwise, it will be a subclass of ApplicationModel. If <tabular ?> is selected, then a table view will be
generated. In this case, the class will be a subclass of VRTableForm and will be ready for usage as a tabular interface. For
usage details on the extended framework, please see the associated documentation.

Category
The category that the class is to be stored in.

Form Generator: Tool Settings

The form generator has a few user settable options, seen in the screen above. These are detailed below:

Input Field Width
The width (in pixels) of an input field. This affects fields that are of one of the following types: String, Password,
FixedPoint, Time, Symbol, Number, Date, Timestamp, MenuButton.

InputField Height
The height (in pixels) of an input field. This affects fields that are of one of the following types: String, Password,
FixedPoint, Time, Symbol, Number, Date, Timestamp, Menu Button

Label/Input Field Separation
The number of pixels between a label (auto generated) and the input field.

Widget Vertical Separation
The number of pixels (vertically) between widgets.

Large Widget Height
The height (in pixels) of an input field. This affects fields that are of one of the following types: ListBox, Text, Subcanvas.

Large Widget Width
The height (in pixels) of an input field. This affects fields that are of one of the following types: ListBox, Text, Subcanvas.

Widget Indentation
Indentation (in pixels) from the left.

4 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

Enhanced UIDefiner

The Enhanced UIDefiner more properly supports the existing GUI painting tools. The definer auto-generates all notification and
validation methods that have been defined in the Property Tool; notification methods answer <self>, and validation methods answer
<true>. In addition, many new features have been added.

The UIDefiner has the following fields:

Domain
The name of the domain model class that the user interface should be hooked up to. If this is filled in, then adaptor code will
be generated to hook the user interface to the domain. If it is left blank, the toll will generate code in the same fashion that it
has in previous releases of VisualWorks.

Buffer Aspects
If this is checked, then BufferedValueHolders (or AspectAdaptors) will be generated.

Model Sends Updates
If this is checked, the generated code will assume that the domain model sends change notification messages for it’s variables.

Aspects in Instance Variables
If this is checked, then all adaptors will be stored in instance variables rather than being returned from aspect methods.

Use Lazy Initialization
If this is checked, then adaptors will be returned from aspect methods. Otherwise, they will be set during initialization.

Add Initialization
 If checked, variables will be preset with appropriate values based on type information. This setting is ignored if a domain
model is being hooked up.

Note that asking for no instance variables and non-lazy initialization is incompatible; the tool will not allow this option. If a domain
model is being hooked up, there is an additional check done. If that domain model exists, then no code is generated for the model. If
that model does not exist, then it is generated as follows:

1. The class will be a subclass of Model
2. A #new method will be generated that sends #initialize
3. An #initialize method will be generated that sets the variables in the domain based on type information acquired from the GUI

tools.
4. Accessing methods (which respond with change information) will be generated.

If non-lazy initialization is chosen, then the following methods will be defined in the user interface class (where MyModel is the name
of the domain model):

initialize
"UIDefiner defined this method.
Do NOT modify this method; place custom
code in <initializeApplication>"

super initialize.
self model: MyModel new asValue.
self initializeAspects.
self initializeApplication.

InitializeAspects
"Preset all aspects. UIDefiner will
overwrite this method"

5 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

fieldSeparator:= ((AspectAdaptor subjectChannel: self model
sendsUpdates: true)
forAspect: #myModelAspect).

initializeApplication
"UIDefiner defined this method. UIDefiner
will not recreate this method, so all
custom initialization code should be placed here."

The #initialize and #initializeAspects methods will always be redefined by the UIDefiner, so customization should be placed in the
#initializeApplication method. Note that when the user interface is being hooked up to a domain model, all instance variables defined
will be hooked to the domain model.

The domain model (when automatically defined) is defined by a new class, ModelDefiner.

6 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

User Interface Frameworks

In addition to the tool level enhancements, a number of ApplicationModel level framework enhancements have been added as well.
These classes are briefly described below.

CommonApplicationModel
Subclass of ApplicationModel

This class contains all the ‘convenience’ protocol that is normally created in an abstract subclass of ApplicationModel. For instance,
instead of the following message send to enable a widget:

(self builder componentAt: #widgetID) enable

this class adds protocol that allows:

self enable: #widgetID

This makes the developer’s task easier, and adds to their general level of productivity. All such common protocol is included in this
class. In the documentation below, protocol names are in italics, method names are bolded.

single-widget management

autoAccept: aSymbol
 Turn on auto accept.

autoAcceptOff: aSymbol
 Turn on auto accept.

backgroundColor: aSymbol to: aColorValue
 Set the color.

beInvisible: aSymbol
 Invisible the widget.

beVisible: aSymbol
 Invisible the widget.

changeListFont: aSymbol
 Change the font of a listView object.

changeListFont: aSymbol to: aFontName
 Change the font of a listView object.

component: aSymbol
 Return the wrapper.

controller: aSymbol
 Return the controller of the widget.

disable: aSymbol
 Disable the widget.

enable: aSymbol
 Enable the widget.

foregroundColor: aSymbol to: aColorValue
 Set the color.

7 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

hide: aSymbol
 Disable, make invisible the widget.

inputLimit: aSymbol
 Return the input limit.

label: aSymbol
 Answer the current label as a string.

label: aSymbol with: aComposedText
 Label a widget - assume input is ready.

label: aSymbol withImage: anImage
 Label a widget - assume an image.

label: aSymbol withString: aString
 Label a widget - assume all bold - if multiline, auto expands.

labelWidget: aSymbol withImage: anImage
 Label a widget - assume an image.

labelWidget: aSymbol withString: aString
 Label a widget - assume all bold - if multiline, auto expands.

modelFor: widgetId
 Answer the valueModel for the widget.

move: aSymbol by: anOffset
 Move widget by an offset.

move: aSymbol to: aPoint
 Move widget to a point.

replaceControllerOf: aSymbol with: aController
 Replace the controller for widget belonging to the componnet whose id is
 aSymbol with aController. Make sure the new controller has the old
 controller's menu and performer. Also make sure the new controller references
 the keyboard processor.

replaceWidgetOf: aSymbol with: aWidget
 Replace the widget.

selectionBackgroundColor: aSymbol to: aColorValue
 Set the color.

selectionForegroundColor: aSymbol to: aColorValue
 Set the color.

show: aSymbol
 Enable, make visible the widget.

takeFocus: aSymbol
 Have component grab focus.

turnOff: aSymbol
 Turn off the widget.

turnOn: aSymbol
 Turn on the widget.

8 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

widget: aSymbol
 Return the widget.

multi-widget-management

autoAcceptAll: anArray
 Turn on auto accept.

backgroundAll: anArray to: aColorValue
 Change the background colors.

beInvisibleAll: anArray
 Make all invisible.

beVisibleAll: anArray
 Make all visible.

disableAll: anArray
 Disable the object(s).

enableAll: anArray
 Enable the object(s).

foregroundAll: anArray to: aColorValue
 Change the foreground colors.

hideAll: anArray
 Hide the object(s).

labelAll: anArray withImage: anImage
 Label all with same image.

labelAll: anArray withString: anImage
 Label all with same string.

moveAll: anArray by: aPoint
 Offset all the object(s).

selectionBackgroundColorAll: anArray to: aColorValue
 Change the foreground colors.

selectionForegroundColorAll: anArray to: aColorValue
 Change the foreground color.

showAll: anArray
 Show the object(s).

turnOffAll: anArray
 TurnOff the object(s).

turnOnAll: anArray
 TurnOn the object(s).

interface opening

openAt: aPoint with: aSymbol in: aRectangle
 Open the interface at a particular location - assume a main window.

openAt: aPoint with: aSymbol in: aRectangle ofType: aType

9 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

 Open the interface at a particular location.

scaleRect: aRect
 Stub - user may intervene to scale rectangle, perhaps based on screen size.

aspects

adapt: anObject using: aSymbol
 Assumes you want updates.

bufferForAspect: aSymbol trigger: aValueModel
 Assumes you get updates.

bufferNoUpdateForAspect: aSymbol trigger: aValueModel
 Assumes you don't get updates.

modelForAspect: aSymbol
 Assumes you want updates.

modelNoUpdateForAspect: aSymbol
 Assumes you don't get updates.

modelValue
 Answers the model for this interface.

dependents access

registerModel: aClass
 Register self with domain.

registerModel: aClass asDependent: aBoolean
 Register self with domain.

setModel: aModel
 Assume the use of 2.x aspect paths: so, model is a ValueModel.

keyboard access

keyboardHook
 Return the main keyboard hook.

keyboardHook: aBlock
 Install a new keyboard hook, return the old one.

keyboardProcessor
 Return the keyboard processor of the window.

api

doFileOpen: aFileString
 Subclass responsibility.

doFileSave: aFileString
 Subclass responsibility.

common dialogs

openFile
 Answer a filename or nil using class CommonFileSelectionDialog.

10 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

saveFile
 Answer a filename or nil using class CommonFileSelectionDialog.

selectDirectory
 Answer a directory name or nil using class CommonDirectorySelectionDialog.

selectFromList: aList
 Answer a selection from the list or nil.

selectionsFromList: aList
 Answer the selections from the list or #().

warnCritical: aMessage
 Dialog warning box.

warnInformative: aMessage
 Dialog warning box.

warnNormal: aMessage
 Dialog warning box.

warnQuery: aMessage
 Dialog warning box, with confirmation requested.

model utilities

aspectAdaptorFor: anAspect
 Answer a new adaptor for this aspect.

bufferedValueHolderOn: aModel
 Answer a new bvh for this aspect.

bufferedValueModelIds
 By default, the application does no buffering of data. Subclasses may wish to
 override this by returning an array of widget ids that are buffering user
 input.

bvhWithAspectAdaptorForAspect: anAspect
 Answer a new bvh for this aspect.

ExtendedApplicationModel

Subclass of CommonApplicationModel

This class contains convenience code targeted at standard application behaviors.
It adds three instance variables:

model
The domain model for this application.

trigger
A trigger that may be used by BufferedValueHolders.

dialogBuilder
Holder for dialog builders.

These variables are commonly defined, so this class stands as a placeholder for that. In addition, it contains protocol for wait/cancel
dialogs, screen positioning of an interface, and standard release behavior.

11 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

accessing

dialogBuilder
 Cached builder for dialog box that is raised.

dialogBuilder: aValue

model
 My model (normally, a ValueHolder on a model).

model: aValue

trigger
 A ValueHolder on a boolean; used by BufferedValueHolders.

trigger: aValue

interface customization

customizeBuiltSpec: aSpec
 Make any mods to the spec object here.

customizeSpec: aSpec
 Make any mods to the spec (the pre-built description) here.

openInterface: aSymbol withPolicy: aPolicy inSession: anApplicationContext
 Open the ApplicationModel's user interface, using the specification
 named and the given look policy and application context.

postBuildWith: bldr
 Register to grab window events.

window-management

expandWindow
 Deiconify window.

hideWindow
 Unmap the window.

iconifyWindow
 Iconify window.

showWindow
 Map the window.

window
 Return the window.

private

copyVarsFrom: oldObject to: newObject
 Copy contents of inst vars where they match.

12 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

initialize-release

release
 Include a default release behavior that will forward release to model.

release: aCollection
 Assume that we want to release a lot of objects.

aspect-management

optimizeInterestIn: aValueModel using: aSelector for: anObject
 Register interest in a value model, with the assumption that the selector is
 unary This avoids overhead of symbol parsing normally done in #onChangeSend:to:.

screen printing

captureScreen
 Capture and return the current window as an image.

printScreen
 Print the active window - rely on Host OS for error message.

screenToClipboard
 Copy the current window to the system clipboard other services.

executeWithCancel: aBlock
 Execute a block with cancel protection.

executeWithCancel: aBlock with: aMessage
 Execute a block with cancel protection.

executeWithCancel: aBlock with: aMessage at: aPriority
 Execute a block with cancel protection.

executeWithWait: aBlock
 Execute a block with wait dialog.

executeWithWait: aBlock with: aMessage
 Execute a block with cancel protection.

executeWithWait: aBlock with: aMessage at: aPriority
 Execute a block with cancel protection platform return the platform name.

screenSize
 Return a point, where x is the width, y is the height.

events

noticeOfWindowClose: aWindow
 If my window is closing, invoke my release behavior, which will also
 release model.

drag-drop support

getElementIndexOfTarget: mousePoint for: targetController
 Given context, controller, grab the element that was dropped on.

startDrag: dragEvent with: dragDictionary for: aController
 Set up the drag drop event.

13 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

error reporting

messageFor: exception
 Answer the normal error string; override for more complex handling.

reportError: exception
 Subclasses might wish to override; this method throws a dialog.

actions

accept
 Trigger an accept to any bufferedValueHolders.

cancel
 Cancel bufferedValueHolder accept.

shutdown
 Discard any buffered values and close.

ServiceApplicationModel

Subclass of ExtendedApplicationModel

This subclass of ExtendedApplicationModel factors out the 'resource' pieces of the framework. Added at this level are the 'child
window' and simple printing support.

Window Services

We can get 'MDI like' services by registering windows as child. Child windows get the collapse, close, and expand events forwarded
to them. Other window messages have been shortened. Check in the protocols window-management and child-management.

Printing support

This support utilizes the document class. Five methods are implemented, as follows:

print
The entry point. Creates an instance of FormattingStream (a subclass of textStream), then sends the message #print: to itself.

print: aStream
This is a subclass responsibility. This method should fill the stream with text.

actuallyPrint
If the variable shouldPrint is true (by default, it is - subclasses may wish dialog control to change it), this method will create an
print the document. It may be modified as follows:

font: whatever is returned by the message #styleType
page: whatever is returned by documentType (#portrait by default)
footer: whatever is returned by #getFooter

child management

addChildModel: anAppModel
 Add an app model to our list.

14 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

hasChildren
 Answer a boolean.

hasParent
 Answer a boolean.

removeChildModel: anAppModel
 Remove an app model to our list.

initialize-release

initialize
 Set up child class support.

release
 Release child class support.

printing-support

canPrint
 Application specific test.

characterWidth: aStyleName
 Answer the width of a character, in case user wishes to format.

documentType
 Answer #landscape or #portrait.

getFooter
 Answer an empty footer - subclasses may override to do something special.

getHeader
 Answer an empty footer - subclasses may override to do something special.

headerSize
 Answer the pixel size for the header.

styleType
 Answer a known font: #fixed is our default.

printing

actuallyPrint: aStream
 Print the contents of the stream- create a document, send to
 printer. Due to win32s bug, default choice (landscape) should
 match choice in Windows print setup. subclasses should override
 for custom behavior.

actuallySave: aStream on: aString
 Subclasses may override for custom behavior.

print: aStream to: aStringOrNil
 Default printing. subclasses should override #producePrintStream:.

printToFile
 Print to a file determined by the dialog.

printToFile: aFileString
 Print to a stream- answer the stream.

15 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

printToPrinter
 Print the stream.

producePrintStream: aStream
 Subclasses should override to fill the stream.

dependency

dependOn: aModel
 Add self as a dependent of a model.

eventFrom: aValueModel sends: aSymbol
 Add a change event.

accessing

bufferedValueModelIds
 By default, the application does no buffering of data. Subclasses may wish to
 override this by returning an array of widget ids that are buffering user input.

depRegistry
 Registry of dependents; developer managed.

depRegistry: aValue

extChildren
 Child windows (list).

extChildren: aValue

extOwner
 Parent window.

extOwner: aValue

printStream
 Stream to print on.

printStream: aValue

shouldPrint
 Boolean; can we print from this form?

shouldPrint: aValue

testing

isEditing
 Is this an editing form (a boolean).

okToChangeModel
 True if model can be changed, false otherwise.

16 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

events

noticeOfChildWindowClose: anAppModel
 A child window has closed; execute any appropriate behavior.

noticeOfWindowClose: aWindow
 Fire #release, where all cleanup should be (VisualWave compatibility).

requestForWindowClose

VRApplicationModel

 Subclass of ServiceApplicationModel

This class adds a ‘UI Registry’ concept to VisualWorks.

To use this, there are two APIs:

answerFromRegistry: aClassName

openFromRegistry: aClassName

In both cases, the application returned is cached in a dictionary for later use. This is useful for presetting a UI, or for ading behavior
that merely hides closed windows instead of destroying them. There is a fair amount of support code included in this class to support
this, including the proper setting of instance variables for follow on user interfaces.
In a VisualWave environment, a hyperlink framework has been added as well. This code allows VisualWave interfaces to treat
standard URLs as user interface button presses, thus allowing for the display of a ‘standard’ web interface.

private

insertToRegistry: aSymbol
 Create a new instance, with the same registry.

openNew: appModel spec: spec
 Open a new instance that is not in the registry.

openOld: appModel spec: spec
 Open an existing instance which is in the registry.

actions

submit
 Convenience method.

api-error reporting

reportDBError: aString
 Report the db error.

reportError: aString
 Report the error.

reportListError: aString onList: aList
 Report the list of errors.

17 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

reportNonModalDBError: aString
 Report the db error, modally.

reportNonModalError: aString
 Report the error, modally.

reportNonModalListError: aString onList: aList
 Report the list of errors, modally.

api-ifc control

closeAllPagesInMySession
 Loop through and close all open pages in my session. If I'm in the web world
 just ask my session for its controllers. If I'm in the screen world, don't
 close all windows in the session (which is the global control manager), just
 close the windows for the applications in my registry.

interface opening

postOpenWith: aBuilder
 After the interface has been opened (but not yet sent to the browser if in
 VisualWave) I now can create create any hyperlinks on the page that map back
 to me. Modify the html text widgets to hold HREF with the appropriate URLs.

api-registry

answerFromRegistry: aSymbol
 Assume the symbol to be a class name, make sure to pass on the registry.

clearRegistry
 Clear the registry.

findAppInRegistry: appModel
 Return the instance of the app model found in the registry - nil if none found.

findAppInRegistryByKey: aSymbol
 Return the instance of the app model found in the registry - nil if none found
 home answer the 'top' page of the registry - subclasses must implement if they
 expect this to work.

openFromRegistry: aSymbol
 Assume the symbol to be a class name.

openFromRegistry: aSymbol using: aSpecName
 Assume the symbol to be a class name.

removeFromRegistry: appModel
 Remove appModel from registry.

removeFromRegistryByKey: aSymbol
 Remove appModel from registry.

events

handleClientPullEvent
 By default, do nothing. Subclasses may wish to implement. This is VisualWave
 specific.

18 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

initialize-release

initialize
 Set up the registry.

initRegistry
 Actually set up registry.

release
 Does not call #releaseRegistry, as only top level appModel can safely do so.

releaseRegistry
 Release the registry. top level appModel should do this.

accessing

creationFlag
 Either #new or #existing. Internally used for caching.

enclosingFrameset
 Only used in VisualWave. In that case, holds the frame appModel that is
 framing me.

enclosingFrameset: aValue

registry
 Answer the registry object.

registry: aValue
 Set the registry object.

selectorsEligibleFromHyperlinks
 The set of selectors that can be used for links.

selectorsEligibleFromHyperlinks: aCollection

shouldCache
 If true, window closure will hide and cache the window. Else just close.

shouldCache: aValue

testing

isDataModel
 Is this a dataModel class (subclass of ExtendedDataModel).

isDBAppModel
 Is this a subclass of VRDBApplicationModel (used to determine which data
 to pass down).

isFramed
 Am I being framed?

isRefreshEvent: submitController
 Answer true if client pull event.

19 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

web-dialog-opening

dialogWarn: aString
 Dialogs for pre 2.0 Wave apps.

aspects

errorText
 Answer error text.

submitting

submitFrom: submitController toComponents: componentCollection
 First, check if this is a client pull event. Next, handle any submissions
 caused by clicking on a hyperlink that maps to an action for an application
 to take. Finally, proceed with the default action.

private-hyperlink response

currentlyDisplayedSubApplications
 Return a collection of any currently displayed sub applications. Subclasses
 may wish to override if they have subapplications that need to respond to
 hyperlink clicks. Only page-level applications receive notification of page
 submission, so if the page doesn't respond to the hyperlink's associated
 action, this list will be used to forward any unconsumed hyperlink clicks on
 to any subapps for possible handling.

findHyperlinkConsumerForMessage: aMessageSelector
 Find the intended consumer for the message send of MessageSelector. The
 consumer could be me or one of my subapplications. Remember, only page-level
 applications are informed of page submissions, so if the page-level
 application (self) is not the consumer (indicated by whether or not I
 understand the message), then determine if one of my subapps is the intended
 consumer. Assume that the first subapp that says they have registered a web
 interest in the message is the intended consumer (for this reason, care must
 be taken that my subapps aren't registering a web interest in the same message
 selectors).

handleHyperlinkClicksInWebRequest: aWebRequest
 Interrogate the URL used to contact VisualWave. If the query string contains a
 parameter of 'action' this indicates that this contact is the result of the
 user clicking on a hyperlink that was dynamically generated by the application
 to map to an action that the application should perform. Be sure to
 convert the argument for 'action' to a symbol because we couldn't store a
 symbol in the URL originally and had to convert the message selector to a
 string. Next find the intended consumer for the action which could be me or
 one of my subapplications. If a consumer was found ask it to perform the
 intended action making sure to pass any parameters that were embedded in the
 URL.

hasWebInterestInSelector: aMessageSelector
 This message should fire a hyperlink if true.

haveConsumer: anApplication perform: aMessageSelector via: aWebRequest
 Ask anApplication to perform aMessageSelector passing any arguments as
 needed. Remember, the only thing that can be stored in URLs are strings, so
 the eventual consumer will need to perform any neccessary argument conversions
 (for example, if a '3' is really intended to be a 3, convert it).

20 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

private-hyperlink creation

hyperlinkForText: aTextString toPerform: aMessageSelector
 Convenience.

hyperlinkForText: aTextString toPerform: aMessageSelector andEmphasis:
anArrayOfEmphasesOrNil
 Convenience.

hyperlinkForText: aTextString toPerform: aMessageSelector withArguments: argumentsOrNil
 Convenience.

hyperlinkForText: aTextString toPerform: aMessageSelector withArguments: argumentsOrNil
andEmphasis: anArrayOfEmphasesOrNil
 Create a hypertext link for aTextString. The HREF for the link will contain an
 URL that maps back to me (the running application) and a reference to a
 message to be sent to myself when this URL is accessed. I cannot embed the
 messageSelector unchanged because of the $#, so convert the symbol to a
 string. Because of limitations in what can be stored in an URL, each argument
 must be reduceable to an opaque string (i.e. a string with no embedded
 whitespace). It is assumed that the eventual receiver of the message will be
 able to perform any massaging of the strings into the appropriate objects –
 for example '3' is really 3. Register a web interest in the message selector
 (in other words, indicate that I respond to this selector from web requests.
 Since many applications could respond to the same message, we register
 those selectors that each application has indicated they respond to from the
 web so that only the application that has registered a web interest will
 receive the message.

registerWebInterestInSelector: aMessageSelector

setHyperlinks
 Populate the specified html text widgets with anchors to hrefs. Subclasses
 may wish to override this.

VRDBApplicationModel

Subclass of VRApplicationModel

This class adds an instance variable, dataModel. The intention is to support applications that use the ObjectLens in a programmatic
fashion. Along with the instance variable, proper release behavior is added. Note that with the registry added in
VRApplicationModel, the dataModel presented here will not be released unless the message #releaseDataModel is sent.

accessing

dataModel
 The dataModel being held.

dataModel: aValue

initialize-release

releaseDataModel
 This should be called by the top level appModel in the chain.

21 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

api

answerFromRegistry: aSymbol
 Assume the symbol to be a class name, make sure to pass on the registry.
 Overriden to make sure dataModel variable is passed on to new entrants

logout
 Logout of the database, releasing sessions as well.

testing

isDBAppModel

ExtendedCompositeApplicationModel

Subclass of CompositeApplicationModel

An analog of ExtendedApplicationModel for VisualWave users of framesets. This class merely duplicates all registry code for the
frame case.

VRDetailForm

Subclass of VRDBApplicationModel

This class provides protocol that is compliant with VRPagngForm, and VRTableForm. It also provides ‘plug-in’ behavior for printing
and saving domain models (which must implement behavior in order to handle these requests). This is the final abstract subclass of
ApplicationModel for detail forms. As such, the Form Generator will generate subclasses of this by default.

interface opening

customizeClient
 This message is sent by VRPagingForm when the wrapped form has been paged to.
 This interface is intended to act in the same fashion as postBuildWith.

postBuildWith: bldr
 Customize self on opening.

initialize-release

initialize

initWith: aModel
 Interface for VRPagingForm.

private

returnToParent
 Raise parent window if have it.

actions

accept
 Perform acceptance based on mode.

22 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

add
 Adding a new entity.

cancel
 Leave actions here to concrete subclasses.

edit
 Accepting an edit.

accessing

editMode
 Answer current editing mode (either #edit or #view).

editMode: aValue
 Set editing mode.

owner
 Parent view (the wrapper if there is one).

owner: aValue

parent
 Parent view.

parent: aValue
 Parent View.

windowLabel

windowLabel: aValue

testing

showEditModeButtons
 Answers false; set to true if edit buttons should display.

api

customizeEmbeddedSubcanvas: spec
 We are embedded, and subcanvases don’t <do the right thing>. So fix it.

disableEditButtons
 Disable edit buttons.

enableEditButtons
 Enable edit buttons.

useConstantData: data
 Data cached in paging form that may be needed.

23 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

VRPagingForm

Subclass of VRDBApplicationModel

This is a ‘wrapper’ class. It is intended to wrap an existing ‘detail’ form. As such, it assumes the presence of protocol provided in
class VRDetailForm. This class provides ‘paging’ behavior to detail forms via a set of VCR type controls.

actions

firstObject
 Page to the first object in my internal list.

lastObject
 Page to the last object in my internal list.

nextObject
 Page to the next object in my internal list.

prevObject
 Page to the previous object in my internal list.

events

addNewItem: anItem
 Add an item to the list.

changedView
 Changed the model underneath.

initialize-release

initialize
 Set up internal dependencies.

initWith: aList on: aContainedForm
 Set up for the new list; cache the detail form.

release
 Release all dependencies that have been set up.

accessing

bindings

bindings: aValue

constantData
 This is a cache (developer dependent) that will be passed between detail forms.

constantData: aValue

dataView
 This is the holder for the current detail form being displayed.

24 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

dataView: aValue

modelSL
 The model holder.

modelSL: aValue

newLabel

newLabel: aValue

noHideButton

windowLabel

windowLabel: aValue

updating

update: anAspect with: aValue from: aModel
 Handle internally set dependency events.

interface opening

customizeBuiltSpec: aSpec
 Change the spec to use the actual embedded canvas.

hideCloseButton
 If true, hide the close button on the wrapper form.

postBuildWith: bldr
 Customize UI with any cached window labels (inst var windowLabel).

testing

hasDynamicBindings
 Set to true; this is for use by the builder in the subcanvas construction
 process. In ApplicationModel, this answers false.

private

atBinding: aKey put: aValue

bindingsFor: aKey

setCountLabel: aCount
 Set the current count on the wrapping form.

25 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

VRTableForm

Subclass of VRDBApplicationModel

This class provides protocol needed by tabular representation of data (as defined by the Form Generator). It wraps creation of
VisualWorks tables in a convenient ‘spec’ method, allowing for easy modification of displays. Subclasses of this class are plug
compatible with VRListForm, and supports VRPagingForm via protocol

initialize-release

initialize

initializeTable: dataList
 Set up table. This is the api usually used to set the form.

initializeTable: dataList from: aSpec
 Set up table.

accessing

detailForm: aValue
 Set the detail form that may be edited.

domainFormClass

domainFormClass: aValue

printHeader
 Print api.

printHeader: aValue
 Print api.

WebTable
 The embedded table.

webTable: aValue

windowLabel
 The label to display on the window.

windowLabel: aValue

interface opening

postBuildWith: bldr

26 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

private

producePrintStream: aStream
 Iterate over the collection, putting a form feed character into it after
 each element. Note the domain elements must know how to represent themselves
 on a stream in order for this to work.

actions

add
 Add a new entity by popping a detail form.

edit
 Edit selected object with a detail form.

editAll
 Bring up a paging form on the list.

print
 Print the objects, with a form feed between each.
 NOTE: Objects in collection must respond to the #printOntoStream: message.

remove
 Remove selected element.

save
 Save the collection of objects; this follows the same protocol as print,
 But first pop a dialog (CommonFilesSelectionDialog) to select the save file.

VRListForm

Subclass of VRDBApplicationModel

This class provides protocol for displaying lists of information. It must be given a detail form for such objects in order to present
editors. As such, it expects the protocol presented by VRDetailForm and VRPagingForm. In order support printing and saving of
objects, the domain objects must implement appropriate protocol. This class is plug compatible with VRTableForm.

actions

add
 Add a new entity by popping a detail form.

edit
 Edit selected object.

editAll
 Bring up a paging form on the list.

print
 Print the objects, with a form feed between each. NOTE: Objects in
 collection must respond to the #printOntoStream: message.

remove
 Remove selected entity from the list.

save
 Save to a formatted file. NOTE: Objects in collection must
 respond to the #printOntoStream: message.

27 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

aspects

dataList
 The internal list of objects.

accessing

dataList: aValue

detailForm: aFormClassSymbol

domainFormClass

domainFormClass: aValue

offList

printHeader
 Label for top of printed pages.

printHeader: aValue

windowLabel
 Label for top of windows.

windowLabel: aValue

initialize-release

initialize

initializeTable: data
 Makes it easy to sub a list form for a table form.

on: aList detailForm: detailClass
 Initialize the form. This is the api usually used.

interface opening

postBuildWith: bldr

api

addDomainObject: anObject
 Add an object to the list.

turnOff: aList
 Make the list un-editable.

28 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

turnOn: aList
 Make the list editable

printing

producePrintStream: aStream
 Iterate over the collection, putting a form feed character into it after
 each element.

Extended ObjectLens Framework

Included in this framework are a set of classes that extend LensAppicationModel. In general, these classes make it easier to use the
ObjectLens programmatically. As provided, most of the protocol useful for programmatic usage is held in LensSession. This
framework extracts a subset of the most useful protocol (while adding useful query protocol as well).

ExtendedDataModel

Subclass of LensApplicationModel

This class provides convenience protocol for programmatic usage of the ObjectLens. It provides convenient protocol for interaction
with the Lens by front-ending most of the protocol that exists in class LensSession.

transactions

abortTransaction
 End a transaction.

beginTransaction
 Start a transaction.

endTransaction
 Wrap up.

okTransaction
 End a transaction.

private

authenticate
 Override the default to avoid the dialog. Developer must have
 set username, password into our instance variables.

executeWithProtection: aBlock
 Execute the block, looking for SQL errors.

messageFor: exception
 Answer the string error message in the exception.

notifyUserOfLensException: anException
 Catch lens exceptions and report them.

postPrepareSample: aSampleObject
 Protocol for QBE queries.

prepareSample: aSampleObject
 Prepare a sample object for QBE queries.

29 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

reportError: exception
 Subclasses might wish to override; here, pop a dialog.

initialize-release

initialize

release
 Release all dbms related resources; rollback any uncommitted
 changes.

accessing

fail
 Answer the fail message that has been cached.

fail: aValue
 Cache a failure message.

pass
 The valueHolder on the password to use for login

pass: aValue

reason
 Cache for failure to login reason.

saveSample
 Cache a sample object for use in QBE queries.

transactionState
 Answer the transaction state.

user
 The valueHolder on the username to use for login.

user: aValue

api

addAll: aCollection
 Add items to the database.

addObject: anObject
 Add object to the database.

login: username password: password
 Login to the database.

removeAll: aCollection
 Remove items from the database.

removeObject: anObject
 Remove object from the database.

updateAll: aCollection
 Update objects into database.

30 01/30/98 Copyright 1998 ObjectShare, Inc. All rights reserved.

updateObject: anObject
 Update object to the database.

api-query

doAllQuery: classNameSymbol forTable: tableNameString
 Execute a ‘select *’ for the named table. Note that a bind
 class must exist in the dataModel.

doEXDICommand: sqlString
 Direct EXDI access for SQL; subclasses must customize to handle
 query results.

doSQLQuery: aString forClass: classNameSymbol
 Create a lensQuery for an arbitrary SQL string.

performQBE: aSymbol using: aSampleObject
 Perform a qbe using sample object.

performQuery: aSymbol
 Execute the named query and answer a collection of objects.

testing

isDataModel
 Answer true.

isDBAppModel
 Answer false.

AbstractVRDataModel

Subclass of ExtendedDataModel

This class extends its parent in one way – instead of reporting errors via dialog box, it caches them.

reportError: exception
 Cache the error string in the <reason> instance variable.

