
Non-Commercial

Advanced Tools

User’s Guide

ObjectShare, Inc., 16811 Hale Avenue, Irvine, California 92606-5089

Copyright © 1995–98 by ObjectShare, Inc. All rights reserved.

Part Number: Non-Commercial

Software Release 3.0

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-
7013.

Trademark acknowledgments:

ParcPlace and VisualWorks are trademarks of ObjectShare, Inc., its
subsidiaries, or successors and are registered in the United States and other
countries. ObjectLens, ObjectSupport, ParcPlace Smalltalk, Database
Connect, DLL & C Connect, and COM Connect are trademarks of
ObjectShare, Inc., its subsidiaries, or successors. ENVY is a registered
trademark of Object Technology International, Inc. All other products or
services mentioned herein are trademarks of their respective companies.
Specifications subject to change without notice.

The following copyright notices apply to software that
accompanies this documentation:

VisualWorks is furnished under a license and may not be used, copied,
disclosed, and/or distributed except in accordance with the terms of said
license. No class names, hierarchies, or protocols may be copied for
implementation in other systems.

This manual set and online system documentation copyright © 1995–98 by
ObjectShare, Inc. All rights reserved. No part of it may be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or
machine-readable form without prior written consent from ObjectShare.

Contents
About This Book vii
Conventions .. vii

Typographic Conventions ... vii
Special Symbols ... viii
Mouse Buttons and Menus .. viii

Getting Help .. x
Additional Sources of Information ... xii

Online Cookbook ... xii

Chapter 1 Profiling Time and Memory Usage 1
Creating an Object Allocation Profiler .. 1
Profiling a Block of Code .. 2

Optimizing the Sample Size ... 2
Analyzing the Object Allocation Profile .. 4

Tree Report .. 5
Adjusting the Cutoff Percentage .. 5
Contracting and Expanding the List 6
Spawning a Method Browser .. 7
Totals Report ... 8
Space Usage Report .. 8

Overview of the Code .. 9
Allocation Profiler’s Wrapped Methods 10
Time and Space Overhead .. 11

Chapter 2 Class Reports 13
Overview ... 13
Creating Class Reports .. 13

Selecting the Target Classes .. 14
Locating Coding Errors ... 15

Class Report Options ... 16
User’s Guide iii

Contents
Messages Sent but Not Implemented 16
Messages Implemented but Not Sent 16
Method Consistency .. 17
Subclass Responsibilities Not Implemented 17
Undeclared References .. 18
Instance Variables Not Referenced 18
Check Comment ... 18
Backward Compatibility Message Sends 19
Indefinite Backward Compatibility Message Sends 20
Backward Compatibility Class References 20

Estimating Memory Requirements .. 20
Documenting Your Code ... 21

Chapter 3 Full Protocol Browser 23
Creating a Full Browser ... 23
Displaying the Full Protocol of a Class ... 25
Filtering Messages by Class ... 25
Searching within the Hierarchy ... 26

Scoping Rules .. 27

Chapter 4 Parser Compiler 29
Overview ... 29
Scanning Source Code .. 30
Parsing .. 31

A Rule has a Name and a Definition 32
Rules are Similar to Methods .. 33
Temporary Variables Can be Used ... 33
A Rule Definition is a Series of Alternatives 33
An Alternative is a Series of Terms 34

A Term is an Action or a Unit-Plus-Qualifier 36
A Unit is a Word, Terminal or Parenthesized Definition 36
A Terminal is a Single Token ... 38
An Action is a Block or a Special Symbol 39
Two Types of Block Syntax are Allowed 40

Summary of Grammar for Parsing Methods 41
Creating your Own Compiler .. 41

Chapter 5 Enhanced Numbers 43
Complex Numbers .. 43

Creating an Instance ... 43
iv Advanced Tools

Contents
Protocol Summary .. 44
Metanumbers .. 44

MetaNumeric Class .. 44
Infinity Class .. 45

Creating an Instance of Infinity 45
Protocol Summary .. 46

Infinitesimal Class .. 46
Creating an Instance of Infinitesimal 46
Protocol Summary .. 46

NotANumber Class ... 47
Creating an Instance of NotANumber 48
Protocol Summary .. 48

SomeNumber Class .. 48

Chapter 6 Benchmarks 49
Using the Benchmark Interface ... 49

Assembling the Test Suite .. 50
Selection Techniques .. 51
Setting the Report’s Granularity ... 51

Raw Benchmark Measurements 52
Individual Benchmark Statistics 53
Benchmark Suite Statistics .. 53

Choosing Types of Statistics ... 54
Setting the Report Destination .. 55
Setting the Number of Iterations .. 55

Creating a Benchmark Subclass ... 56
Benchmark Superclass .. 56
SystemBenchmark Subclass .. 57
BenchmakTable Class ... 57
BenchDecompilerTestClass Class .. 57

Appendix Parcels 59

Index 61
User’s Guide v

Contents
vi Advanced Tools

About This Book

The Advanced Tools User’s Guide provides the experienced
VisualWorks® developer with information necessary to use the
tools and reusable code provided with this add-on component to
VisualWorks.

Conventions
We have followed a variety of conventions, which are standard in
the VisualWorks documentation.

Typographic Conventions
The following fonts are used to indicate special terms:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.
User’s Guide vii

About This Book
Special Symbols
This book uses the following symbols to designate certain items or
relationships:

Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse
common on various platforms. Smalltalk traditionally expects a
three-button mouse, which we denote by the logical names
<Select>, <Operate>, and <Window>:

Examples Description

File�New command Indicates the name of an item (New) on a menu
(File).

<Return> key

<Select> button

<Operate> menu

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are appropriate
for the current view or selection. The menu that is
displayed is referred to as the <Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.
viii Advanced Tools

Conventions
These buttons correspond to the following mouse buttons or
combinations:

Note: On Windows, a two-button mouse may give the
wrong menu if a three-button mouse driver is installed.
If you have this problem, load the JuggleButtons parcel
in the goodies directory, which fixes the problem.

3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Middle button Right button <Option>+<Select>

<Window> Right button <Ctrl> + <Select> <Command>+<Select>
User’s Guide ix

About This Book
Getting Help
VisualWorks Non-Commercial is provided as is without any
technical support from ObjectShare. There are on-line sources of
help and a number of good books.

There is a web page for VisualWorks Non-Commercial at
http://www.objectshare.com. This provides up to date information
on the release.

The University of Illinois at Urbana-Champaign have kindly
provided a mailing list for users of VisualWorks Non-Commercial.
To (un)subscribe, you need to send a message to:
vwnc-request@cs.uiuc.edu with the SUBJECT of subscribe or
unsubscribe.

Finally there are a number of good books on Smalltalk in general
and VisualWorks in particular. Two books which concentrate on
the VisualWorks (Version 2.5) are:

• Smalltalk: An introduction to application development using
VisualWorks
Trevor Hopkins and Bernard Horan
Prentice-Hall, ISBN 0-13-318387-4

• Smalltalk by Example. The developer's guide
Alec Sharp
McGraw-Hill, ISBN 0-07-913036-4
x Advanced Tools

http://www.objectshare.com

Getting Help
(page deleted; not applicable to the non-commercial version)
User’s Guide xi

About This Book
Additional Sources of Information
In addition to this manual, VisualWorks includes a number of
other documents. The ObjectShare publications website
(http://www.objectshare.com/doc) has VisualWorks documents
that can be viewed or downloaded.

Online Cookbook
The VisualWorks Cookbook is available online for quick reference to
common procedures. Before accessing the online Cookbook, you
must load the Help parcel, help.pcl .

To display the online documentation browser, open the Help pull-
down menu from the VisualWorks main menu bar and select Open
Online Documentation, then select the Cookbook.
xii Advanced Tools

http://www.objectshare.com/doc

Chapter 1

Profiling Time and Memory
Usage

The Time Profiler helps you locate portions of your code that
consume undue amounts of processing time. The Allocation
Profiler performs a similar service for memory usage.

The user interface is very similar for both profilers, so they are
often discussed generically in this chapter —“profiler” refers to
both equally.

Creating an Object Allocation Profiler
To open a Time Profiler, select Launcher’s Tools�Advanced Menu�
Profiles�Time. To open an Allocation Profiler, select allocations in
the submenu. A profiler window contains the following
components: a code view for entering the code to be analyzed, a
slider control for adjusting the sample size and, in the Allocation
Profiler only, a space statistics button to extend the coverage of the
analysis. Each of these components is discussed further below.

The parts of a profiler

button

slider

code view
User’s Guide 1

Chapter 1 Profiling Time and Memory Usage
Profiling a Block of Code
To create a profile of time or memory usage, enter the Smalltalk
expressions in the code view of the profiler encased in a self profile:
[] expression (an example is provided as a template when you open
a new profiler). For example, suppose you wanted to find out what
proportion of the memory allocated by the following expression
was allocated by the Date method:

self profile: [Transcript show: Date today printString]

Enter the expression in the code view of an Allocation Profiler,
then highlight it and select do it in the <Operate> menu. After the
expression is executed (today’s date is printed in the System
Transcript), the results of the analysis are displayed in a new
window. For an explanation of the report, see “Analyzing the
Object Allocation Profile” on page 4.

In the Allocation Profiler, click on the space statistics check box to
include a summary of object/byte allocations by class. This
summary is described on page 10.

Optimizing the Sample Size
A profiler typically provides only an approximation of the time or
memory being used by each method that is called. It does so, in
effect, by monitoring the process at a regular interval, called the
sampling interval. For example, if a babysitter checks in on children
playing in their room every half hour, the sampling interval is 30
minutes.

At each 30 minute check point, the babysitter has to assume that
the behavior of the moment has been going on for the past half
hour. By reducing the sample size to 15 minutes, the babysitter
will get a more accurate picture of the children’s activities, though
it will cost more time and effort.

The sample size can affect the accuracy of the results dramatically.
Reducing the sample size improves the accuracy, but may slow
down the profiling run disproportionately. Setting the sample size
2 Advanced Tools

Profiling a Block of Code
to zero, for example, causes the profile to be updated after each
indivisible chunk of time or memory is used, which can be very
time-consuming. In most situations, the default sample size
provides adequate accuracy without slowing things down
unnecessarily.

To reduce the sample size (for brief processes), move the slider to
the left until the desired numerical size is shown below the slider.
To increase the sample size (for time- or memory-intensive
processes), move the slider to the right. (To move the slider, place
the cursor on the dark bar, press and hold the <Select> button on
the mouse, then move the mouse to position the slider.)

Speed versus accuracy trade-off when adjusting the sample size

In the example used above, printing today’s date in the transcript,
the process is so light in its memory usage that the default
sampling interval of 1024 bytes is inappropriate. The process is
only monitored a few times, resulting in misleading allocation
statistics. The obvious solution is to reduce the sample size so the
process is checked more frequently.

An alternative technique is to leave the sample size at the default,
but repeat the process many times. We can accomplish this by
entering the following expression in the code view of the profiler:

self profile: [100 timesRepeat: [Transcript show: Date today
printString]]

Large sampling

Small sampling

(speed)

(accuracy)
User’s Guide 3

Chapter 1 Profiling Time and Memory Usage
This approach often gives superior accuracy because the odds of
one or more checkpoints occurring in a low-consumption part of
the process are improved. In our example, it turns out that the Date
today part of the process only allocates about 3 percent of the bytes,
so in a single pass it would be overlooked unless the sample size
was very small.

Analyzing the Object Allocation Profile
After the process that you are profiling has finished executing, the
profile is displayed in a profile window having the following
components:

• A record of the sampling parameters.

• A slider for changing the cutoff percentage and a button for
applying a new percentage.

• A text view for displaying the statistics.

• A totals switch and a tree switch for selecting the type of
statistics to be displayed in the text view; and, in an allocation
profile for which the space statistics check box was turned on, a
third switch labeled space usage for displaying those statistics.

The structure of a profile window

slider

switches

switches
4 Advanced Tools

Analyzing the Object Allocation Profile
Each of these components is discussed further below.

At the top of the profile window, a set of statistics display useful
information about the profiling run, which include:

• Number of samples

• Sample size

• Total bytes consumed (allocation profile)

• Total milliseconds consumed, in both elapsed and processor
time (time profile).

This information is useful in judging whether a change in the
sampling interval will prove fruitful—because relatively few
samples were taken, for example. This information also serves to
label the profile, distinguishing it from profiles generated by other
sampling runs on the same code.

Tree Report
When the tree switch is selected, the text view displays a listing of
consuming methods that were called during the process. This
listing is useful for locating the places in your code that consume
the most time or memory, and therefore merit your optimizing
attention.

Each method selector is preceded by a number representing the
percentage of system resource (bytes or milliseconds) consumed by
that method. The tree is displayed in the form of an indented
list—each method is indented under its calling method.

Adjusting the Cutoff Percentage
Only those methods that consumed more than a threshold
percentage of time or memory are shown. The default is 2 percent,
meaning any method that consumed less than 2 percent of the
time or memory is excluded from the listing. In effect: “If it’s
smaller than this, don’t bother me with it.”
User’s Guide 5

Chapter 1 Profiling Time and Memory Usage
The slider and button used to change cutoff percentage

To get finer detail in the profile, reduce the cutoff percentage by
moving the slider to the left. To restrict the profile to the methods
that consumed larger chunks of time or memory, move the slider
to the right. After you have changed the position of the slider,
apply the new cutoff by clicking on the apply cutoff button.

Contracting and Expanding the List
Another means of making the list more manageable in size is to
temporarily remove selected subhierarchies from the display. To do
so, select the method above an unwanted subhierarchy and then
use the contract fully command. The selected method redisplays in
boldface, indicating that it can be expanded to show more detail;
its called methods will be eliminated from the display.

A profile entry contracted and expanded

To restore detail under a contracted method, use either expand (for
a single level of called methods) or expand fully (for the entire
subhierarchy) in the <Operate> menu.
6 Advanced Tools

Analyzing the Object Allocation Profile
Spawning a Method Browser
To examine the body of a method in the tree, select the desired
method and then use spawn in the <Operate> menu. A method
browser will be opened in a separate window. Besides the selected
method, which is listed in boldface in the new window, the
browser will list parent and child methods when appropriate.

A Method Browser on the selected method and its neighbors

While the browser offers most of the features of a code view,
including text editing, you cannot recompile an edited method
(via accept) in this window because that could cause confusion
about the state of the code at the time of the profile.

You can also browse senders of the selected message, implementors of
the method, and implementors of messages contained in the
selected method. These operations are the same as in the System
Browser.
User’s Guide 7

Chapter 1 Profiling Time and Memory Usage
Totals Report
When the totals switch is selected, the text view displays a list of
the fundamental object-creating methods that were called, with
the percentage of system resource consumed by each.

A sample “totals” report

For example, a process that deals with graphics might make many
calls to the x:y: method in the Point class. That activity would be
summarized here. If you felt Point was taking an inordinate
amount of time or memory to get the job done, you might
investigate alternative coding paths that would generate fewer
messages to Point.

To open a code browser on a selected method and its surrounding
contexts, use the spawn command as described above.

Space Usage Report
When the space usage switch (only available in an allocation
profile) is selected, the text view displays a list of object types that
were created—technically, a list of classes that were instantiated.
For each, the number of instances is indicated along with the
cumulative memory usage (in bytes). The cutoff percentage has no
effect on this report—all classes that allocated objects are listed.

This report differs from the totals report in two important ways.
First, it summarizes the activity by class rather than by object-
allocating methods within classes. For example, Point>>asPoint and
Point>>+ might be listed separately in the totals report but they are
subsumed under a single entry for Point in the space usage report.
8 Advanced Tools

Overview of the Code
Second, space usage shows the number of instances and the amount
of memory used, while total shows a percentage of allocated memory.

A sample “space usage” report

An allocation summary is provided at the bottom of the space
usage report, which shows a count of total objects and the average
size of each object. This information is broken down by byte-type
and pointer-type objects.

Overview of the Code
The following classes provide the kernel of profiler functionality:

• Profiler and its subclasses, TimeProfiler and AllocationProfiler
• MessageTally, a subclass of Magnitude

In early releases of VisualWorks, the MessageTally class provided
time-profiling behavior in addition to its current reduced role. The
profiling part of its functionality has been factored into Profiler,
which provides more general support for assessing usage of an
arbitrary system resource. The two subclasses, TimeProfiler and
AllocationProfiler, specialize that spying ability for specific
resources.
User’s Guide 9

Chapter 1 Profiling Time and Memory Usage
This architecture aligns with the fundamental notion that any
system resource can be metered with the sampling apparatus
provided by Profiler and the storage mechanism provided by
MessageTally. For example, you could construct new subclasses of
Profiler to measure disk seeks.

The newly trimmed-down version of MessageTally represents a
single node in the tree-like hierarchy of message-sends that occur
during the process being profiled. When the profiler stops the
running process to take a sample, a MessageTally is created for the
method that is currently executing (unless that method was
already tallied in the previous sample, in which case its tally is
simply updated). Then instances of MessageTally are created and/or
updated for the calling methods.

Each MessageTally remembers its place in the calling tree by
holding onto its caller and its callees. This permits the report
generator to construct the indented list known as the tree report.

Allocation Profiler’s Wrapped Methods
While TimeProfiler enforces its sampling interval straightforwardly,
by monitoring the system clock, AllocationProfiler requires a more
complicated mechanism. It maintains a list of primitive methods
that allocate space for objects. Each time one of these methods is
called, the original method is renamed. In its place, a “wrapped”
version is substituted. This new version meters the memory usage
in addition to performing its original function. At the end of the
profiling run, AllocationProfiler restores all such wrapped methods
to their original state.

AllocationProfiler assembles its list of allocating primitives during
initialization of the class. The list and the resulting cache can
become out of date when you add, delete or change a primitive
method. Before using AllocationProfiler after you have filed in or
otherwise recompiled code containing primitive calls, execute
AllocationProfiler initialize.
10 Advanced Tools

Overview of the Code
Time and Space Overhead
The profilers impose relatively minor time and space overhead on
the running process. Time overhead depends on the sampling
frequency you choose—with the default of 16 milliseconds, the
process will take roughly 50–70 percent more time than in its
unmonitored condition. Memory overhead varies depending on the
nature of the code.

The classes described in this chapter are useful in applications
requiring advanced mathematical constructs such as complex
numbers and infinity.
User’s Guide 11

Chapter 1 Profiling Time and Memory Usage
12 Advanced Tools

Chapter 2

Class Reports

Overview
The Class Reports tool performs a variety of automated checks on
specified classes and helps you:

• Repair common coding errors.

• Estimate memory requirements of your application.

• Document your code.

Class Reports is a specific tool that is built on top of a set of
general system-analysis capabilities. Those system-analysis
facilities could well be put to use in other ways as well.

Creating Class Reports
To open a Class Reports window, select Launcher’s Tools�Advanced
Menu�Class Reports.

The Class Reports window contains the following components for
defining the contents of the report:

• A Class Patterns view for roughly defining the classes to be
checked.

• A Class List view for selecting individual target classes.

• Three switches for choosing a type of report.

• Depending on the type of report selected, two extra switches
may be provided for choosing the output destination.
User’s Guide 13

Chapter 2 Class Reports
• Depending on the type of report and the output destination,
additional options may be provided.

• A button labeled run for launching a scan-and-report sequence.

Selecting the Target Classes
You can generate a report for a single class, all classes or any list of
classes. Keep in mind as you assemble your list that the amount of
time required to produce a report increases with each added class.

Use the Class Patterns view to make a rough cut at the list. Enter
one or more wildcard patterns, one per line. Each such entry can
contain a class category component and/or a class component. If
both components are present, separate them with a greater-than
symbol (>). Then choose accept in the <operate> menu to display
all classes matching those criteria in the Class List view. Wildcard
patterns are not case sensitive; an asterisk (*) stands for any string,
and a number sign (#) stands for any single character. You can also
use the paste command to insert a list of patterns that you use
frequently.

Using a wildcard pattern to define a work list of classes

Classes
beginning with
with 'Change'

Categories
beginning
with 'Tools'
14 Advanced Tools

Locating Coding Errors
The following examples are all valid class patterns:

Then, in the Class List view, click on the desired class or classes to
highlight them for inclusion in the report. Use the add all
command in the <operate> menu to select all of the classes in the
list at once; use clear all to deselect all of them. To select a range of
classes, hold down the <Shift> key while dragging through the
desired class names; to deselect a range of classes, hold down the
<Control> key while dragging.

Locating Coding Errors
To scan the selected classes for coding errors, select the Correctness
switch in the upper left corner of the Class Reports window. Two
new switches will appear, labeled Report and Browse. When the
Report switch is selected, ten report options are displayed. Each
option has a check box, and you can check any number of them to
build up the desired report. When the Browse switch is selected,
eight of the options are offered—the other two are only
appropriate for report output.

Valid class patterns

Tools* Classes in categories beginning with ‘Tools’

tools* Same as above

Tools-Misc>* Classes in the Tools-Misc category

Tools*>Changes* Classes beginning with ‘Changes’ in categories
beginning with ‘Tools’

Changes* Classes beginning with ‘Changes’

ChangesList The class name ChangeList
User’s Guide 15

Chapter 2 Class Reports
Class Report Options

Messages Sent but Not Implemented

Each method in the class is checked to make sure that every
message sent is implemented somewhere in the system. No
attempt is made to assure the appropriateness of the implementor.
For example, a self grok message is acceptable even if grok’s
implementor is not in the target class or its superclass hierarchy.

Methods that send an unimplemented message are reported or, in
Browse mode, listed in a browser for examination and possible
correction.

Messages Implemented but Not Sent

Each method in the class is checked to make sure that its selector is
sent by at least one calling method.

Defining what it means for a message to be “sent” is problematic.
As an extreme example, one could have code that says self perform:
(a,b) asSymbol, where a and b are variables that hold 'foo' and 'bar',
respectively. This code, then, sends the message foobar, but no
practical analyzer can figure this out. So system tools have to take a
particular stand as to what it means for a message to be sent.

In the case of this facility, the stance taken is exactly the same as
that taken by the senders and messages facilities in the System
Browser: a message is sent if some compiled code has the message
selector as a literal. It will be a literal if the selector is used in code
(e.g., self foobar), or if the symbol exists in literal form (e.g., self
perform: #foobar). (The exception to this rule is a set of special
selectors known by the compiler classes. These selectors are always
considered to be sent, even if they do not appear as literals
anywhere.)
16 Advanced Tools

Locating Coding Errors
As a result, the facility may falsely report that some implemented
messages are not sent, so the report should be used as a guide. The
above example is, of course, poor programming style.

Methods that are not sent are reported or, in Browse mode, listed in
a browser for examination.

Method Consistency
When two messages sent to the same instance or class variable
assume different object types, a conflict is reported.

Similarly, when a temporary variable is used to hold two very
different kinds of objects (considered bad form) and thus is sent
incompatible messages, a conflict is reported.

The current value of each class variable, pool variable and global
variable is also tested to be sure its class implements the messages
that are sent to it.

Finally, an inconsistency is reported when a message is sent to self
that is not understood by the self object.

When inconsistent methods are found, they are reported or, in
Browse mode, listed in a browser.

Subclass Responsibilities Not Implemented
Each method that consists of a self subclassResponsibility message
motivates a check of each leaf subclass to make sure it owns or
inherits a reimplementation of that message.

Note that abstract subclasses need not implement these
messages—in such cases, the report will falsely report errors, so
use the report as a guide.

Offending methods are reported or, in Browse mode, listed in a
browser.
User’s Guide 17

Chapter 2 Class Reports
Undeclared References
Each method in the class is checked to verify that no undeclared
literals are used. Offending methods are reported or, in Browse
mode, listed in a browser.

Instance Variables Not Referenced
Each instance variable is checked to make sure it is referenced by
at least one method. Unreferenced variables are reported; this
option is not available in Browse mode.

Check Comment
The class comment is checked to make sure it mentions all
instance variables, class variables and class instance variables that
are in the class definition.

The comment is expected to follow a particular syntax:

• Any amount of plain text followed by a line that says “Instance
Variables:”.

• After that line, there should be a line for each instance
variable, containing the variable’s name followed by one or
more spaces and tabs, followed by a “type” specification in
angle brackets, followed by one or more tabs and spaces,
followed by text describing the variable.

• If the class has indexed instance variables, include another line
as described above, substituting “(indexed instance variables)”
for the variable name.

The type specification is typically one or more class names, or nil,
separated by vertical bars. In place of class name, you can also use
"ClassName of: OtherClassName", for example "Array of: Boolean".
The syntax allows more complicated descriptions; for more
information, see the method comments in Parser>>typeExpression
and Parser>>simpleType.
18 Advanced Tools

Locating Coding Errors
If the class defines any class variables, the comment should have a
section similar to the instance variable section. The heading line is
expected to say "Class Variables:".

Finally, if the class has messages defined as self
subclassResponsibility, these messages should be listed in a section
with "Subclasses must implement the following messages:" as its
heading.

The parsing of class comments is somewhat rigid and sometimes
what appears to be a valid comment will generate errors in this
report, so use the report as a guide. For example, if a type
description does not fit on one line, or if the variable description
does not start on the same line, the facility will report these as
errors.

For instance variables, the facility performs a protocol test:

• All messages sent to each instance variable are verified as
being implemented for the named class (or, if more than one
class is named, for at least one of them).

• If the class has existing instances, each variable is expected to
hold an object of the named type.

• For each class variable, the current value is expected to be an
object of the named type.

This option is not available in Browse mode. If a comment contains
the words UNDER DEVELOPMENT (in capital letters), that fact is
reported and no checking takes place for that class.

Backward Compatibility Message Sends
The methods are checked to see whether they send messages that
exist (only) in a backward compatibility protocol.
User’s Guide 19

Chapter 2 Class Reports
Indefinite Backward Compatibility Message Sends
Similar to the preceding option, but the checker only pays
attention to the ambiguous case, when a message send exists in
both a backward compatibility category and another category. In this
situation, static analysis cannot determine whether the message
send is inappropriate, so it is reported as a candidate for your
further investigation.

Backward Compatibility Class References
The methods are checked to see whether they refer to a class that is
in a class category that contains the string ‘backward compat’
(without case sensitivity).

Estimating Memory Requirements
To receive an estimate of the memory requirements of the target
classes, select the Space switch in the upper-right portion of the
Class Reports window. Three new switches will appear. Each
button provides a different perspective on the estimated memory
requirements, as follows:

• Class Size —For each target class, the report shows the
estimated number of bytes required for the class definition,
variables, methods and class organization.

• Method Size—For each method in a target class, the following
measurements are reported:

• Code Bytes—the memory occupied by the method’s byte
code, the portable compiled form of the method that is
used to create native machine code.

• Literals—the number of literal pointers created by the
compiler to refer to such things as message selectors,
arrays, strings and floats. Each such literal pointer
contributes 4 bytes to the total.

• Literal Bytes—the number of bytes required by literal
objects other than Symbols.
20 Advanced Tools

Documenting Your Code
• Full Blocks—the number of full blocks in each method.
Full blocks are blocks that contain out-of-scope references
to temps, or nonlocal (^) returns. Full blocks are
nonoptimal because they are slower and use more dynamic
memory. This is only of concern in methods that are used
frequently.

• Total—the estimated total number of bytes needed by
each method, including overhead (20 bytes) not reported
in the other columns. A total byte count for all methods is
also displayed.

• Instance Size—For each target class, the following
measurements are reported:

• Count—the number of instances that exist.

• TotBytes—the memory, in bytes, occupied by all
instances.

• AveByte—the average number of bytes for each instance.

A summary line reports the same measurements for all target
classes.

These reports are intended to help you optimize memory usage
by identifying places in your code where memory usage is
disproportionate to the functional contribution of the code.

Documenting Your Code
To create a listing of some or all of the elements that make up the
code in the target classes, select the Manual switch in the upper left
portion of the Class Reports window. Two new switches will
appear, labeled Report and Print. When the Report switch is selected,
the documentation is displayed in a separate window. When Print is
selected, the output is sent to a printer instead.
User’s Guide 21

Chapter 2 Class Reports
The following check-box options are provided for defining the
code components to be included in the listing. The options are
hierarchic and interconnected, as follows:

• class definition

• class comment

• include metaclass—include the metaclass definition.

• protocol names—instance protocol names are reported; class
protocol names are included when the include metaclass check-
box is selected.

• include private protocols—include any protocol beginning with
the string “private.” Private protocols are made separable in
this way because only public protocol is relevant for certain
types of manuals.

• methods—list method selectors, including metaclass and
private methods if those check-boxes are selected.

• method comments

• method bodies—including method comments.

Various text emphases are used for the different components of
documentation. For example, #italic is used for the class comment.
To change one of these emphases, modify and recompile the
appropriate method in the emphases protocol on the instance side
of the ManualWriter class.
22 Advanced Tools

Chapter 3

Full Protocol Browser

The Full Protocol Browser is an expanded version of the System
Browser. It has all of the capabilities of a standard System Browser.
In addition, it enables you to include superclass and subclass
protocol in the message category and message views. You can also
filter the methods by class.

This hierarchic view of a class’s functionality can be especially
helpful under the following circumstances:

• When you are exploring unfamiliar code, because the Full
Browser presents the full behavior set of each class.

• When you are modifying a polymorphic method, because the
Full Browser makes it easy to trace inherited behavior.

Creating a Full Browser
To create a Full Protocol Browser, select Launcher’s Tool�Advanced
Menu�Full Browser.

System Browser compared to Full Protocol Browser

1 2

5

4
3

Switch bank

Class hierarchy view

1 2 3 4

5

System Browser Full Protocol Browser
User’s Guide 23

Chapter 3 Full Protocol Browser
A Full Browser appears much like a standard System Browser, with
the addition of a class hierarchy view, as shown in the following
figure. In addition, three switches are provided for filtering the
browser’s display.

A Full Browser, with the ArithmeticValue class selected

The class hierarchy view enables you to filter out parts of the
hierarchy and to perform cross-reference searches that are limited
to the hierarchy, as described in later sections.
24 Advanced Tools

Displaying the Full Protocol of a Class
Displaying the Full Protocol of a Class
As shown in the above figure, selecting a class such as Fraction in
the class view causes the class’s hierarchy to be displayed in the
hierarchy view. The current class displays in boldface type as a
visual cue.

All messages and message categories in this hierarchy display in
the appropriate views. The message category view, also known as
the protocol view, differs from a view in the System Browser in
that the entries list alphabetically. In the message view,
polymorphic messages are repeated unless you filter them out, so
each method selector can be identified by the class in which it is
implemented. In the above figure, for example, the reciprocal
method is listed twice, once for ArithmeticValue and again for
Fraction. Messages in the current class are displayed in boldface for
visibility.

By default, the Object class is excluded from the active list so it is
displayed with a line through it. The following section tells how to
include and exclude classes from the list.

Filtering Messages by Class
The hierarchy view enables you to filter unwanted classes from the
protocol views. To exclude a class, click on it in the hierarchy view.
It will be redisplayed with a line through it. To exclude multiple
classes that are listed in sequence, hold down a <Shift> key while
dragging through the classes to be excluded.

The appearance of included and excluded classes in the
hierarchy view

Excluded

Included
User’s Guide 25

Chapter 3 Full Protocol Browser
To include a class that was previously excluded, click on it. It will
be redisplayed without the line through it.

To include multiple classes that are listed in sequence, hold down
the <Control> key while dragging through the classes to be
included.

Use the switches in the switch bank to set up default filtering that
suits your purposes. Two of the switches provide a convenient
means of including or excluding protocol for all superclasses except
Object (supers), or all subclasses (subs). By default, duplicate
inherited methods are not shown (because they are overridden by
the local method)—to show them, select show inherited duplicates in
the hierarchy view’s menu.

The third switch, names, toggles whether the implementing class
is identified after each method selector.

Searching within the Hierarchy
The senders command in the message view’s menu operates as it
does in a System Browser, searching all classes in the system for
methods that se

To limit the search to methods implemented by a class in the
current hierarchy, select senders in hierarchy in the <Operate> menu
of the hierarchy view. Note that all classes in the hierarchy are
included in the search, regardless of whether they are filtered out
of the protocol and message listings. This is typically much faster
than a search of the entire library, and tends to exclude
uninteresting implementations. Similar hierarchic counterparts for
the implementors and messages commands are also available in the
hierarchy view’s menu.

The <Operate> menu of the hierarchy view, used to limit scope
of search
26 Advanced Tools

Searching within the Hierarchy
Scoping Rules
The hierarchy view’s menu also offers a find method command,
which differs from the protocol view’s command of the same name
in two ways. First, because the list of selectors may be very large,
you get an opportunity to filter it by specifying a wildcard pattern.
Second, the implementing class is shown for each selector, and
duplicates are listed in inheritance order.

The scope of the commands in the class view’s menu and the
protocol view’s menu are limited to a single class, as in a standard
System Browser. However, when a method selector is highlighted,
the commands relate to that class. Otherwise, they relate to the
class that is highlighted in the class view. (In FullBrowser’s code,
selectedClass and nonMetaClass refer to the method view’s class,
while currentClass and currentNonMetaClass refer to the class view’s
class.)

For example, suppose you have selected ArithmeticValue in the class
view and then you highlight the denominator (Fraction) entry in the
message list view. When you select the comment command to
display the class comment, Fraction’s comment is displayed. To see
the comment for ArithmeticValue, select a message for that class (or
no message at all).

To restate this scoping mechanism, the selected message’s class
overrides the class view’s class.

There are two exceptions to this rule: the remove and rename as
commands in the message category view. Removing or renaming a
message category affects the class that is highlighted in the class
view, in all circumstances.

The scope of a message category is extended in a perhaps
unexpected but useful way in a Full Browser. As you would expect,
when you select a message category such as comparing, all
comparing methods in the filtered hierarchy are listed. In addition,
methods in superclasses and subclasses that have the same selectors
as comparing methods in the current class are included, even if
User’s Guide 27

Chapter 3 Full Protocol Browser
they are located in protocols other than comparing. In other words,
when the same selector appears in two different protocols in the
hierarchy, Full Browser lists those that could conceivably be
grouped in the current protocol because they match qualifying
selectors in the current class.

For example, suppose you select the accessing protocol for the
Integer class. Both Integer and its subclass LargePositiveInteger
implement a method called digitLength. The LargePositiveInteger
version of digitLength would be included even if it were housed in a
protocol named other than accessing. This behavior obeys the
convention that polymorphic messages are placed in protocols of
the same name, while allowing for human error and personal
choice in the enforcement of that convention.

In summary, the changes in the scoping rules compared with a
standard System Browser are as follows:

• Class and protocol view commands apply to the class of the
selected message, if any; otherwise, they apply to the current
class. Exceptions are the remove and rename as commands,
which always apply to the current class.

• In the hierarchy view, the find method command applies to the
filtered hierarchy while the other commands ignore the filters.

Conflicts in protocol names for polymorphic messages are
ignored.The Time Profiler helps you locate portions of your code
that consume undue amounts of processing time. The Allocation
Profiler performs a similar service for memory usage.
28 Advanced Tools

Chapter 4

Parser Compiler

Overview
The parser compiler classes make it easier to write compilers in
Smalltalk. The SQL classes provide an example of an SQL compiler
written using the parser compiler facilities.

A typical compiler handles four functions:

• Scanning—breaking the source code into tokens (words,
numbers, operators, etc.).

• Parsing—combining tokens into larger structured units.

• Semantic analysis—verifying that variables have been
declared, performing type checking, etc.

• Code generation—producing a program in machine code or
other final form. This may occur in several phases if
optimization or more than one representation of the output
code is involved.

The parser compiler classes provide the following support for these
activities:

• Scanning—the Smalltalk Scanner, slightly modified.

• Parsing—This phase is the primary focus of the Parser
Compiler, providing an efficient language for writing your
parser.

• Semantic analysis—the Parser Compiler makes it fairly easy
to mix in semantics during parsing. This helps to generate an
error message that points at the right place in the source code.

• Code generation— you’re on your own. The Parser Compiler
itself demonstrates one style of code generation: It generates
User’s Guide 29

Chapter 4 Parser Compiler
Smalltalk source code during parsing. The complexity of most
languages prevents being able to combine code generation
with parsing.

Scanning Source Code
The scanner defines seven standard types of token:

• word—a variable or unary message selector

• number—integer or floating point

• character
• string

• binary—infix operators such as + and >=
• keyword—a word followed by a colon (see below)

• signedNumber—a number optionally preceded by a minus
sign, with no intervening delimiters

There is an eighth standard token type, keywords, for one or more
keywords in succession with no intervening delimiters. This
produces a single token. Keywords are only recognized specially if
your grammar uses the word keyword or keywords, or if your
grammar includes any literal keywords. (This is for the benefit of
grammars that don’t use keywords, but use the colon for other
purposes.)

In addition, the scanner makes assumptions about delimiters
(blank, tab, end-of-line and new-page), which separate tokens but
aren’t tokens themselves. It also assumes that the following
characters are tokens on their own: # () | [] . : = ^ and ;. To change
any of these assumptions requires an understanding of the
Scanner’s mechanics—you have to write your own initScanner
method that calls super initScanner and then substitutes the
appropriate entries in the typeTable.
30 Advanced Tools

Parsing
Parsing
For the parsing phase, begin by making your parser a subclass of
ExternalLanguageParser—SQLCompiler has been provided as an
example. If your source language is method-oriented and you want
the output of the parser to be executable CompiledMethods, make
your parser a subclass of GeneralParser instead.

This gives your class basic parsing functionality. The parser scans
source code one character at a time and one token at a time. You
must then write production rules describing the various parts of
your language. These rules define parsing algorithms, which your
parser will use to recognize constructs such as functions and clauses
in the source code. The syntax of production rules will be
described in a moment.

Each clause or other construct found in the source code must be
instantiated as a node in a parse tree. For example, when an SQL
clause is recognized in the source code by SQLCompiler, an instance
of SQLClause is created. Classes such as SQLClause typically are
subclassed from a more general class such as SQLNode.

As an example of this node-creation mechanism, the production
rule implemented by SQLCompiler for recognizing an SQL commit
statement creates an instance of SQLStatement as follows:

EmulationBorderDecorationPolicy unInstallcommitStatement =
#COMMIT #WORK

[statement: 'COMMIT WORK']

In this example, the word COMMIT followed by WORK in the source
causes execution of the block. A statement: message is sent to
SQLCompiler, and that method sends an instance creation message
to SQLStatement with the 'COMMIT WORK' string as the statement
name.
User’s Guide 31

Chapter 4 Parser Compiler
The ultimate output of the parser is an array containing objects
such as SQLFunction, which themselves are often composites of
smaller language constructs such as SQLClause. This array
represents a parse tree that you can use to generate code.

As the parse tree is being assembled, it is stored in an
OrderedCollection called stack, held by GeneralParser. This stack
responds to collection protocol such as removeLast, and stack
operations are frequently embedded in blocks within the
production rules. For example, the SQLCompiler>>queryTerm rule
contains the following assignment into a temporary variable:

tableExp := stack removeLast.

A Rule has a Name and a Definition
A production rule describes a semantic unit of the language in
terms of other semantic units combined with literal tokens. It
introduces the name of the semantic unit, followed by =, followed
by the definition, which may include references to other
production rules or to literal keywords that are expected at various
points in the source-code.

As an example, the following production rule is taken from
SQLCompiler:

assignment =

column #= (scalarExp | #NULL)

When a production rule is invoked, its definition is used as a
template for the current source code. If the template fits, the rule
returns true, triggering creation of the appropriate node in the
parse tree. If the definition doesn’t match, either the rule returns
false, or an error notification occurs.

name of the rule

definition
32 Advanced Tools

Parsing
Rules are Similar to Methods
It is no accident that a production rule looks like a Smalltalk
method. It is created just as a Smalltalk method is, by adding it to
the instance protocol for your compiler class (SQLCompiler, in this
case). You can use the System Browser to do so, or you can file it
in. This is possible because the ParserCompiler’s responsibility is to
take production rules and translate them into equivalent Smalltalk
code, which is then translated into an executable method. Each
production rule is translated into a method whose selector is the
name of the production rule. As a result:

• You can browse production rules in the same way you browse
Smalltalk methods.

• Production rules can call Smalltalk code, and vice versa.

Temporary Variables Can be Used
A production rule can have temporary variables. These are defined
the same way as in Smalltalk, by enclosing the list of names
between two vertical bars.

A production rule begins with a method pattern consisting of the
name of the rule, plus names for any arguments. Except for the
terminating equal sign (=), the syntax is identical to that of a
Smalltalk method, allowing for unary, binary and keyword
patterns.

A Rule Definition is a Series of Alternatives
The body of a production rule, called its definition, is a series of
alternatives, separated by vertical bars (|). The parser tries to match
the current source code to each alternative in turn. If a given
alternative succeeds, the definition succeeds and returns true. If an
alternative fails, the next alternative is tried.
User’s Guide 33

Chapter 4 Parser Compiler
The final alternative in a series can be left empty to return true
immediately. If the series is enclosed in parentheses, the empty
alternative is indicated by a vertical bar preceding the closing
parenthesis. If the series is the body of the definition, the empty
alternative is indicated by making a vertical bar the last element of
the definition.

For example:

(a | b) c The next tokens must match either 'a' or 'b', followed by
'c'

(a |) c The next token or tokens must match either 'a' followed by
'c', or 'c' alone

An Alternative is a Series of Terms
An alternative is a series of terms, each alternative optionally
preceded by an at sign (@). Each term is evaluated sequentially
against the source code. If a term succeeds, the parser proceeds to
the next term; otherwise it fails. If the last term in the alternative
succeeds, the alternative returns true. If the alternative fails,
behavior depends on several factors:

• If the at sign is present, the source code stream is rolled back
to the state it was in when the alternative was started, and
false is returned.

• If the term that failed was the first in the alternative, false is
returned.

• Otherwise, an error notification is returned.

The following figure summarizes these outcomes in a decision tree
showing that action that results when a term is evaluated under
various conditions.
34 Advanced Tools

Parsing
Summary of the outcomes in a decision tree

Two examples follow:

a b c

Expect to find an a, followed by b and c. If a is not found, proceed
to the next alternative or return false. If b or c is not found, print
an error message.

@ a b c

Expect to find an a, followed by b and c. If a, b, and c are not found
when expected, proceed to the next alternative or return false.

Suppose the parser matches a, but fails to match b. For accurate
error detection, the ParserCompiler will not automatically back up
on failure, so in this case a message would appear saying b
expected. However, it is possible that if the source stream were
backed up, we might be able to match c d rather than a b.
Therefore, in this case, it is appropriate to write the rule as:

@ a b | c d

Term matches code

Last term in

First term in

@ precedes alternative

^true

Rollback source

BagLast alternative

Y

NY

Y
Y

Y

N
N

N

N

alternative

proceed
alternative

Rollback source
^false

proceed

BagLast alternative

Y N

^false

error

to next
alternative

proceed
to next
alternative
User’s Guide 35

Chapter 4 Parser Compiler
Then, if a succeeds but b fails, the parser will back up and try to
match c followed by d.

Another way to think about it is: When the first term in an
alternative is matched, the parser assumes it has found the correct
alternative. If a later term fails to match, the parser reports an error
based on its assumption that the correct template was applied
unsuccessfully. The at sign removes that assumption so that,
instead of generating an error in this situation, the compiler
proceeds to the next alternative.

A Term is an Action or a Unit-Plus-Qualifier
A term can be an action, or it can be a unit followed by one of the
following symbols:

* * ! + +! \ \! !*

We will discuss the more common type of term first: units and
their quantifying modifiers.

A Unit is a Word, Terminal or Parenthesized Definition
A unit can be a word, a terminal, or a definition wrapped in
parentheses. If it is a word, that word is assumed to be the name of
another production rule. Some examples:

Word and associated production rule

foo Evaluate the production rule foo on the current
source code. If it returns false, fail the current
alternative, else continue.

word=#ABC If the next token in the source is ABC, push it on
the stack and scan another token, else fail the
alternative.

keyword=#ABC: If the next token in the source is ABC:, push it on
the stack and scan another token, else fail the
alternative.

$(If the next token is the open parenthesis character,
scan another token, else fail the alternative. The
stack is unaffected.
36 Advanced Tools

Parsing
The following examples illustrate the use of the seven quantifying
symbols with units. In these examples, foo pushes a FooNode onto
the stack, while foo2 does not affect the stack.

#ABC If the next token in the source is ABC, scan another
token, else fail the alternative. The stack is
unaffected.

#ABC:[keyword type] If the next token in the source is ABC:, scan another
token, else fail the alternative. The stack is
unaffected.

#~= If the next token in the source is ~=, scan another
token, else fail the alternative. The stack is
unaffected.

#’<<=’ If the next token in the source is <<=, scan another
token, else fail the alternative. The stack is
unaffected.

(...) When parentheses are encountered, the enclosed
part of the rule is parsed according to the rules for
definition on page 33.

Quantifying symbols

foo * Expect zero or more repetitions of foo. The top
value on the stack will be an Array of FooNodes.

foo *! Expect zero or more repetitions of foo. The top N
values on the stack will be FooNodes, where N is
the number of repetitions.

foo + Expect one or more repetitions of foo. The top
value on the stack will be an Array of FooNodes.

foo +! Expect one or more repetitions of foo. The top N
values on the stack will be FooNodes.

foo \ foo2 Expect one or more repetitions of foo, separated by
foo2. The top value on the stack will be an Array of
FooNodes.

Word and associated production rule (Continued)
User’s Guide 37

Chapter 4 Parser Compiler
A Terminal is a Single Token
A terminal is a single token in the language, such as a number, a
string, a variable name or a keyword. In the ParserCompiler, the
following terminals are recognized:

• A dollar sign ($) followed by a single character, representing a
literal character in the source.

• A number sign (#) followed by:

• A string (any sequence of characters enclosed in single
quotes)

• A word (an alphabetic character followed by alphabetic
characters or digits)

• A keyword (a word followed by a colon)

• A binary symbol (anything that represents a legal binary
operator in Smalltalk, such as //, \\, *, ~~ and ~=)

• The sequence word=#someWord, where someWord is a word as
defined above

• The sequence keyword=#someKeyword, where someKeyword is a
keyword as defined above

The difference between #someWord and word=#someWord, is that
in the former case someWord becomes a reserved word in the
language and is always treated specially. In the latter case,
someWord does not become a reserved word and is treated specially
only when it is preceded by word=.

foo \! foo2 Expect one or more repetitions of foo, separated by
foo2. The top N values on the stack will be
FooNodes.

foo !* Expect one occurrence of foo. Assume that foo
leaves an Array on the stack. Pop the Array off the
stack and push each of its elements onto the stack.

Quantifying symbols (Continued)
38 Advanced Tools

Parsing
An Action is a Block or a Special Symbol
An action can be either a Smalltalk block or one of the following
special symbols:

The first four operations are for matching source code positions to
parse nodes. The last two are for use with Smalltalk blocks. When
a Smalltalk block appears in a production rule, the block is
evaluated and the result is pushed onto the stack. If you are
interested in the effect of the block but not the returned value,
follow the block with a period to get rid of the unwanted value. To

Action symbols

Symbol Description

< Saves the source position in a local variable (specifically, the
temps instance variable in ParserCompiler). Note that only
one source position per production rule is saved, so if you
overwrite it, the old value is lost.

> Assumes that the source position was previously saved via <,
and that the top value on the stack is a parse node. The parse
node is sent a sourcePosition:to: message, with the saved
position as the first argument and the current position as the
second argument. This implies that your node classes must
implement a sourcePosition:to: message when you use this
symbol in a production rule.

<< Pushes the source position onto the stack.

>> Assumes that the top value on the stack is a parse node, and
that the next value is a source position saved by <<. The
parse node is sent a sourcePosition: message, with an interval
from the saved position to the current position as the
argument. The source position is removed from the stack,
and the parse node remains the top element.

? Pops the top value off the stack. If it is true, proceed,
otherwise fail the current alternative.

. Pops the top value off the stack and proceed.
User’s Guide 39

Chapter 4 Parser Compiler
decide whether to continue parsing after a block has been
evaluated, follow the block with a question mark to cause the
current alternative to proceed or abort depending on the returned
value.

Two Types of Block Syntax are Allowed
Two distinct syntaxes are accepted for Smalltalk blocks. One form
of syntax is identical to that of normal Smalltalk blocks having
zero arguments. The second form is nonstandard and requires
further explanation—it has the advantage of very concise coding,
with the disadvantage of very restricted syntax.

Like a normal block, this special block is enclosed in square
brackets. It consists of exactly one message —the message can be
either a binary or keyword message, but not a unary message. The
receiver is specially coded:

• If there is no receiver, the message is sent to the parser itself.

• If the message selector is preceded by a colon (:), the top value
is popped off the stack and used as the receiver.

Each of the arguments is likewise specially coded:

• If there is no argument, or if the argument is a colon (:), the
top value is popped off the stack and used as the argument.

• If the argument is a normal Smalltalk literal (Symbol, String,
Number, Array, ByteArray, Character, or nil, true or false), it is
used in the ordinary way.

• If the argument is a temporary variable, instance variable, class
variable or global variable, it is used in the ordinary way.

For example, the following block sends a copyWith: message to the
top value on the stack, with the second value on the stack as
argument:

[:copyWith:]

Note that no argument can be the result of a message send.
40 Advanced Tools

Creating your Own Compiler
Summary of Grammar for Parsing Methods
Here is a simplified version of the grammar for parsing methods,
written in itself:

method = pattern #= temporaries definition

pattern = word | (keyword word)+

temporaries = $| word* $| |d

definition = alternative ($| alternative)*

alternative = ($@ |) term*

term = unit
((#* | #*!)
| (#+ | #+!)
| (#\ | #\!) unit |)

unit = word | character
| $# (word | keyword | binary | string)
| $(definition $)

Creating your Own Compiler
In preparation for writing programs in your new language, first
define a compiler class MyLanguageCompiler, then define a dummy
class MyLanguage. Define the following class method for
MyLanguage:

compilerClass

^MyLanguageCompiler

Then any methods defined in class MyLanguage or any of its
subclasses will compile with MyLanguageCompiler rather than the
standard Smalltalk compiler. The example methods in the SQL
class are compiled by SQLCompiler in just this way.
User’s Guide 41

Chapter 4 Parser Compiler
The typical instance creation protocol for a parser takes either a
Stream or a String as input, as well as the name of the top-level
production rule to be applied. For example:

CParser parse: aStream as: #cFile

The final step in code generation is done by the message generate:.
This message is defined in GeneralParser on the assumption that
the output of your compiler (i.e., the single element left on the
stack at the end of recognizing a method) is a string that is actually
a Smalltalk source method, which then gets handed to the
Smalltalk compiler.

However, you can override this method in your own compiler to do
something different. It should return a selector if the code
generation succeeds, or nil if it fails. In the case of the SQL
example, the final object is an Array containing a parse tree in the
form of a hierarchy of nodes. Try the examples on the instance side
of the SQL class, inspecting the results recursively to see the
structure of the parse tree.

This object responds to Smalltalk messages and can thus be
manipulated to suit the next phase of compilation.
42 Advanced Tools

Chapter 5

Enhanced Numbers

The classes described in this chapter are useful in applications
requiring advanced mathematical constructs such as complex
numbers and infinity.

Complex Numbers
An instance of class Complex has two components, a real number
such as a Float, and an imaginary number (a multiple of i, which
represents the square root of -1). A Complex number is represented
in the following format: (5.5 + 3 i)—white space inside the
parentheses is ignored.

Creating an Instance
An instance can be created by using the literal form shown above,
or via the real:imaginary: method, as in Complex real: 5.5 imaginary:
3. When the real component is zero, sending the message i to an
integer is sufficient, as in 3 i. When the imaginary component is
zero, the shorter fromReal: method can be used. In summary, the
expressions in the left column generate the Complex numbers in
the right column below:

3 i (0 + 3 i)

5.5 + 3 i (5.5 + 3 i)

Complex fromReal: 5.5 (5.5 + 0 i)

Complex real: 5.5 imaginary: 3 (5.5 + 3 i)
User’s Guide 43

Chapter 5 Enhanced Numbers
Protocol Summary
Complex numbers support the usual numeric operations,
including accessing, arithmetic, mathematical functions, coercion,
comparison, conversion, testing and generality. Nonequal
comparison, truncation and rounding are not valid with complex
numbers. Additional methods include:

Metanumbers

MetaNumeric Class
Infinity and Infinitesimal are the best examples of metanumbers,
which are impossible but mathematically useful constructs. The
MetaNumeric class is an abstract superclass with four subclasses, as
follows:

MetaNumeric
Infinity
Infinitesimal
NotANumber
SomeNumber

Accessing

r Same as abs, which returns an absolute magnitude.
For example, (5.5 + 3 i) r returns 6.26498.

theta Return the angle between the receiver and the
positive real axis, in radians

Arithmetic

conjugated Reverse the sign of the imaginary component.

Converting

asPoint Return a Point with the real component as the x value
and the imaginary component as the y value.

i Multiply the receiver by (-1 sqrt). This message is also
understood by Number after MetaNum.st is filed in.
44 Advanced Tools

Metanumbers
The MetaNumeric class provides coercion and conversion support
for its subclasses. Must of this support comes in the form of double
dispatching methods, which bring coercion into play when two
unlike numbers fail in some arithmetic or comparison operation.

For example, suppose you execute the following expression:

 2.3 + (Infinity positive)

The Float method for addition doesn’t know how to add infinity to
a floating point number directly, so it asks the Infinity object to
perform the addition. It does so by evaluating:

(Infinity positive) sumFromFloat: self

The sumFromFloat: method is implemented by MetaNumeric, the
abstract superclass of Infinity. After coercing the floating point
number into meta form (making it an instance of SomeNumber),
the superclass hands off to Infinity to perform the specific addition.
All metanumbers need to have non-metanumbers coerced to meta
form, so this behavior is performed by their common superclass,
MetaNumeric.

Infinity Class
Infinity represents a number too large to be represented in any other
form. We will use the terms +infinity and -infinity to denote the
positive and negative forms of this number.

It is defined to mean that for any real number x, the following is
true:

-infinity < x < +infinity

Creating an Instance of Infinity

The expression Infinity positive creates a positive instance of Infinity,
and Infinity negative creates a negative instance.
User’s Guide 45

Chapter 5 Enhanced Numbers
Protocol Summary
The usual numeric operations are supported by Infinity, according
to the following rules (where x is any real number):

x + +infinity = +infinity
x - +infinity = -infinity
x * +infinity = +infinity when x > 0
x * -infinity = -infinity when x > 0
0 * +infinity = 0
+infinity + +infinity = +infinity
-infinity - +infinity = -infinity
+infinity * (+/-)infinity = (+/-)infinity
-infinity * (+/-)infinity = (-/+)infinity
+infinity - +infinity = undefined value, and an error occurs

Because +infinity is not a single value, but a set of all real numbers
that are unrepresentably large, it makes no sense to ask whether
+infinity = +infinity. Doing this will cause an error.

Infinitesimal Class
infinitesimal is a number so close to zero it cannot be represented as
a conventional number—it can be thought of as the reciprocal of
Infinity.

Creating an Instance of Infinitesimal
Creating an instance of Infinitesimal is done exactly as with Infinity,
by executing an expression such as:

Infinitesimal positive
Infinitesimal negative
Infinitesimal negative: aBoolean

Protocol Summary
We will use the terms +tiny and -tiny to denote the positive and
negative forms of this number.
46 Advanced Tools

Metanumbers
The usual numeric operations are supported, according to the
following rules (where x is any real number unless otherwise
specified):

x + +tiny = x when x ~= 0.
0 + +tiny = +tiny
x * +tiny = +tiny when x > 0
x * -tiny = -tiny when x > 0
0 * +tiny = 0
+tiny + +tiny = +tiny
-tiny - +tiny = -tiny
+tiny * (+/-)tiny = (+/-)tiny
-tiny * (+/-)tiny = (-/+)tiny
+tiny - +tiny = undefined value, and an error occurs
x / +infinity = +tiny when x > 0
x / +tiny = +infinity when x > 0
+tiny * +infinity = undefined value, and an error occurs

Loosely speaking, +tiny is not a single value, but a set of all real
numbers that are unrepresentably small. As with infinity, it makes
no sense to ask whether +tiny = +tiny.

NotANumber Class
An instance of NotANumber can be used as a placeholder for the
result of an illegal mathematical expression, such as 8 arcSin. Since
the behavior of NotANumber consists of various kinds of error
signals of the form “You can’t do such-and-such with a NaN,” the
result is substituting one kind of error for another. In theory,
NotANumber error signals could be trapped by a signal handler at a
high level in your application, which could then decide, for
example, to continue with some time-consuming computation,
noting the error in a log, rather than abort because of the error.
NotANumber was created for the sake of completeness—along with
Infinity and Infinitesimal, it is defined by IEEE in the set of floating
point numbers.
User’s Guide 47

Chapter 5 Enhanced Numbers
Creating an Instance of NotANumber
To create an instance, execute NotANumber new.

Protocol Summary
NotANumber implements the common arithmetic and comparison
methods, raising an error signal for each.

The printable form of an instance is “NaN” so error strings use
that term, as in:

'Can't perform arithmetic functions on NaN'

SomeNumber Class
SomeNumber represents a conventional scalar number coerced into
metanumeric form so it can be used in both conventional and
metanumeric computations. Such a number responds to numeric
operations as usual, but has the same generality as other
metanumbers and can be used in metanumeric computations. It is
essentially a support class for the other metanumeric classes so it
has little potential for reusability.
48 Advanced Tools

Chapter 6

Benchmarks

The Benchmark class provides a framework and a convenient
interface for running benchmarks to compare your application’s
performance across versions and in various operating
environments. A simple subclass of Benchmark can be built to run
the benchmarking tests. As an example, we have provided a
subclass called SystemBenchmark, which contains updated versions
of the historic test suite we at ObjectShare use to compare system
performance on different platforms.

This chapter describes the reusable interface and related
mechanisms provided by the Benchmark class, using the
SystemBenchmark subclass as an example. The final section then
explains how to implement your own benchmarks.

Using the Benchmark Interface
To open the example System Benchmarks window, select Launcher’s
Tools�Advanced Menu�Benchmarks.

In addition to the System Benchmarks window, a Benchmark
Transcript window will open to display the test results.
User’s Guide 49

Chapter 6 Benchmarks
The System Benchmarks window with default settings

The System Benchmarks window has two views, arranged side by
side. The benchmarks view, on the left side, lists the available
benchmark tests. The parameters view, on the right, contains a
variety of buttons and fill-ins for controlling report attributes. A
button marked run is located below the list view — use the button
to begin execution of a test suite.

Assembling the Test Suite
Although a benchmarking run can be limited to a single type of
test, such as adding 3 + 4 thousands of times, a run frequently
involves a suite of several related tests. You can use the benchmarks
view to select the tests you want to include in a run. To select an
individual test, just click on it with the <Select> button; click
again to deselect it. A check mark appears in the margin next to
each selected test.
50 Advanced Tools

Using the Benchmark Interface
Selection Techniques
To select multiple adjacent tests, hold down the <Shift> key while
dragging the cursor through the desired tests (the check marks
will appear after you release both the mouse button and the
<Shift> key). To deselect multiple adjacent tests, hold down the
<Control> key while dragging through the test names.

To cancel all selections, use clear selections in the <Operate> menu;
use select all to include all of the tests. The subclass can define a
default suite of tests— in our example, SystemBenchmark uses as
defaults the tests used by ParcPlace for standard comparisons of
platform performance. You can reset the test suite to the defaults at
any time by selecting reset to default in the <Operate> menu. To
summarize these operations:

Setting the Report’s Granularity
At the end of each benchmarking run, a report is generated
containing statistics accumulated during the tests. Three buttons
at the top of the parameters view control the level of detail in the
report, as follows:

Selection techniques for system benchmarks

Operation Description

click <select> button Select and deselect a single test

<Shift> + drag <select> Select multiple tests

<Control> + drag <select> Deselect multiple tests

select all Select all tests

clear selections Deselect all selected tests

reset to default Select default tests
User’s Guide 51

Chapter 6 Benchmarks
Raw Benchmark Measurements
Details about each iteration of each test method. This information
can be used to discover significant variations among iterations. The
first iteration of an operation, for example, might consume a
disproportionate amount of time because it might not take
advantage of compiled-code caching.

The following times, for example, were reported for three
iterations of two tests in the SystemBenchmark suite: text
displaying and text replacement.

[display text]
10 repetition(s) in
0.921 seconds
92100.0 microseconds per repetition

[text replacement and redisplay]
20 repetition(s) in
5.1 seconds
255000.0 microseconds per repetition

[display text]
10 repetition(s) in
0.88 seconds
88000.0 microseconds per repetition

[text replacement and redisplay]
20 repetition(s) in
4.98 seconds
249000.0 microseconds per repetition

[display text]
10 repetition(s) in
0.94 seconds
94000.0 microseconds per repetition

[text replacement and redisplay]
20 repetition(s) in
4.98 seconds
249000.0 microseconds per repetition

First iteration

Second iteration

Third iteration
52 Advanced Tools

Using the Benchmark Interface
Individual Benchmark Statistics
A summary of statistics for each test. In effect, this section of the
report summarizes the details described above, whether or not the
details themselves are included in the report. This information is
useful for identifying the slow performers in a suite of tests,
marking them as candidates for optimization.

Results are converted to rates (by the convert:toRateFor: method in
the subclass) when the rates switch is selected. When the times
switch is selected, no such conversion takes place. (The class
comment for Benchmark discusses this mechanism and its
implications further.) Types of statistics are described in “Choosing
Types of Statistics” on page 54.

The following example reports the minimum, maximum and
median for the raw times reported in the example above:

Benchmark Suite Statistics
A summary for the entire suite, the purpose of creating a suite in
the first place is to measure the performance of some subsystem.
Benchmarking provides a weighted average for the performance of
that subsystem, which you can then use to compare with an
identical benchmarking run under different operating
circumstances.

For the weighted average, the report displays the same columns as
for the individual statistics. For example, if you elect to display
only the median value for individual benchmarks, only the median
value for the suite-wide statistic will be shown.

Individual benchmark results (three interations)

Benchmark Minimum Maximum Median

TextDisplay 136.170 145.455 138.979

TextEditing 82.7451 84.7389 84.7389
User’s Guide 53

Chapter 6 Benchmarks
Let’s use the minimum H-Mean (harmonic mean) to illustrate the
derivation of these statistics further. Each time the test suite is
performed, the individual test results are converted to rates and
then combined mathematically to arrive at the harmonic mean
score for that iteration.

The suite was performed three times, in our example, so three such
harmonic means are derived. The minimum H-Mean represents
the lowest of the three scores. Similarly, the maximum H-Mean is
the highest of the three, and the median H-Mean is the median (or
middle value) of the three.

Choosing Types of Statistics
The two summary sections of the report can include different types
of statistics. You control which types are included in the report by
selecting buttons in the parameters view. The types of statistics are
as follows (i represents the number of iterations):

• Minimum—the result from the best-performing iteration.

• Maximum—the result from the worst-performing iteration.

• Arithmetic mean—the average of all iterations; sum/i.

• Harmonic mean—The number of iterations, divided by the
sum of the inverses of the weighted results for the separate
iterations.

i/[(1/result1) + (1/result2) + ...]

Benchmark suite results (three iterations)

Rating Type Minimum Maximum Median

Minimum 118.539 126.309 125.558

Maximum 139.13 142.222 142.222

H-Mean 116.364 119.425 118.321

Median 118.539 126.309 125.558
54 Advanced Tools

Using the Benchmark Interface
Note: The median harmonic mean of the
SystemBenchmark default test suite is the standard
benchmark score used by ParcPlace when comparing
system performance in different operating
configurations. This test suite differs from the suite
used in prior releases of VisualWorks, so the scores
cannot be compared across versions meaningfully.

• Median—the value that is midway through a ranked list of
the scores. For example, if you specify five iterations, the
median is the third element in the sorted collection of scores.

The harmonic mean is only useful when summarizing overall
performance, so it is not available under the heading Characterize
individual and suite results using:. Under the heading Summarize overall
performance using:, the arithmetic mean is only offered when you
select the times switch; when the rates switch is selected, the
harmonic mean is offered.

Setting the Report Destination
The report can be displayed in the Benchmark Transcript window,
stored in a disk file, or both. Use the buttons under the heading
Write report to: in the parameters view to select one or both
destinations. You can provide the name of a file in the fill-in blank.
The file will be created in the start-up directory unless you specify
an absolute or relative pathname.

Setting the Number of Iterations
The test suite can be repeated as a means of improving the
accuracy of the results. By default, the iteration count is set to
three. To change the number of iterations, type the desired number
in the fill-in blank labeled Number of iterations per run.

The number of iterations represents the number of times the test
suite will be repeated—this is not to be confused with repetitions
that are hard-coded into a given method. For example, the
User’s Guide 55

Chapter 6 Benchmarks
test3plus4 method repeats the 3 + 4 operation 100,000 times for
each iteration, so three iterations would cause the operation to be
repeated 300,000 times.

In some situations, a single iteration may produce more interesting
results. For example, a method might take a relatively long time to
execute on its first pass, but run much faster subsequently.
However, if your application calls the method only infrequently,
the first-iteration results might prove more illuminating.

To begin execution of the testing run, click on the run button. If
your window manager is configured to prompt you for placement
of windows, you might consider turning off that feature before
running the default test suite or other suites involving window-
displaying operations. However, prompt-for-placement can be left
on without affecting the results.

Creating a Benchmark Subclass
The benchmarks are implemented via the following four classes, all
of which are subclasses of Object:

• Benchmark, and its subclass SystemBenchmark
• BenchmarkTable
• BenchDecompilerTestClass

Benchmark Superclass
Benchmark is an abstract superclass whose protocol provides the
interface we have been describing, as well as the timing and
statistical analysis facilities for a benchmarking run. It has instance
variables for remembering the report parameters as selected in the
interface, and the test results as they are accumulated. Benchmark
also provides the reporting protocol, making use of BenchmarkTable
(described further below).
56 Advanced Tools

Creating a Benchmark Subclass
SystemBenchmark Subclass
Subclasses of Benchmark, such as SystemBenchmark, are responsible
for providing the specific tests to be run. See the methods that
begin with the word “test” in SystemBenchmark for examples.

In addition, subclasses must implement the following accessing
messages:

benchmarkLabelForSelector:

benchmarkSelectors
initiallySelectedBenchmarks

Subclasses may also need to override Benchmark’s weighting
protocol, to establish relative weights for test methods and to
convert the results to an appropriate rate; and the defaults protocol,
which determines the default selections in the user interface.

BenchmakTable Class
BenchmarkTable provides two-dimensional reporting capabilities
that might well be useful to other applications, though the code
requires extensions to make it more generally useful. It holds onto
a report name, a collection of column labels and a collection of
rows. Each row is assumed to be a collection itself.

The protocol is tailored to the needs of the benchmark reports,
though it provides a subset of a more generally useful set of
behaviors.

BenchDecompilerTestClass Class
BenchDecompilerTestClass is a holder for methods that are
decompiled during the SystemBenchmark>>testDecompiler
benchmark. The code in the methods has no functional value—in
fact, it is obsolete.
User’s Guide 57

Chapter 6 Benchmarks
58 Advanced Tools

Appendix

Parcels

The following is a list of Advanced Tools parcels and the classes in each.

Category Filename Classes

All Advanced Tools AllAdvancedTool.pcl no classes; serves to load all other
Advanced Tools parcels

AT Benchmarks ATBenchmarks.pcl BenchDecompilerTestClass
Benchmark
SystemBenchmark
BenchmarkTable
BenchmarkRunner

AT MetaNumerics ATMetaNumerics.pcl Complex
Infinitesimal
Infinity
MetaNumeric
NotANumber
SomeNumber

AT ParserCompiler ATParserCompiler.pcl ExternalLanguageParser
GeneralParser
ParserCompiler
PushFragment
RecognizerFragment
User’s Guide 59

Appendix Parcels
AT Parser Example ATParserExample.pcl SQL
SQLClause
SQLCompiler
SQLFunction
SQLIdentifier
SQLInfixOperation
SQLLiteral
SQLModifier
SQLNode
SQLPostModifier
SQLStatement

AT Profiling ATProfiling.pcl AllocationProfiler
MessageTally
ProfileMethodListBrowser
ProfileOutlineBrowser
Profiler
ProfilerListHolder
TimeProfiler
TreeBuilder

AT Support ATSupport.pcl DisablingSelectionInList
EvaulationHolder
GroupingSelectionInList
TreeObjectHolder

AT System Analysis ATSystemAnalysis.pcl ClassDeclarations
ClassNameChooser
ClassReporter
InstanceTally
ManualWriter
MessageAnalyzer
MessageCollector
ReferencePathCollector
SystemAnalyzer

AT Tools ATTools.pcl FullBrowser
OutlineBrowser
WindowBrowser

Category Filename Classes
60 Advanced Tools

Index
Symbols
<Operate> button viii
<Select> button viii
<Window> button viii

B
Benchmarks

Arithmetic mean 54
BenchDecompilerTestClass 57
Benchmark class 56
Benchmark suite statistics 53
BenchmarkTable class 57
clear selections command 51
creating a subclass 56
Harmonic mean 54
Individual benchmark statistics 53
Maximum 54
Median 55
Minimum 54
opening example 49
Raw benchmark times 52
report components 51
reset to default command 51
run button 50, 56
select all command 51
SystemBenchmark class 49, 57
types of statistics 54
window components 50

buttons
mouse viii

C
Class Reports

accept command 14
add all command 15
Browse switch 15
Check comment 18
Class List view 15

Class Patterns view 14
Class Size 20
clear all command 15
Correctness reports 15
finding coding errors 15
Inst vars not referenced 18
Instance Size 21
Manual switch 21
memory usage reports 20
Messages implemented but not sent 16
Messages sent but not implemented 16
Method consistency 17
Method Size 20
opening 13
Report switch 15
Space switch 20
SubclassResponsibilities not implemented 17
text emphases 22
Undeclared references 18
Wildcard patterns 14
window components 13

Complex
components 43
instance creation 43
protocol 44

conventions
typographic vii

F
fonts vii
Full Browser

class hierarchy view 25
filtering protocol by class 25
find method command 27
message category scope 27
opening 23
remove command 27
rename command 27
User’s Guide 61

Index
senders in hierarchy command 26

I
Infinitesimal 44, 46
Infinity 44, 45

M
MetaNumeric class 44
mouse buttons viii

<Operate> button viii
<Select> button viii
<Window> button viii

N
NotANumber 47
notational conventions vii

P
Parser Compiler

action terms 39
alternatives in rules 33
at sign (@) 34
backing up in the input 34
block syntax 40
code generation 29
CompiledMethods as output 31
compilerClass 41
compiling source code 41
generate: 42
parse tree 31
parsing phase 31
production rule 32
production rules 31
quantifying symbols 37
rule grammar summary 41
rules vs. methods 33
scanner delimiters 30
scanner tokens 30
scanning 29
semantic analysis 29
SQL example 29
stack 32
subclassing ExternalLanguageParser 31
subclassing GeneralParser 31
temporary variables in rules 33
terminals 38
terms in an alternative 36
unit terms 36

Profilers
apply cutoff button 6
contract fully command 6
cutoff percentage 5
do it command 2
expand command 6
expand fully command 6
MessageTally class 9
opening 1
overhead 11
profile descriptors 5
profile window 4
Profiler class 9
repetitions 3
reusing 10
space statistics checkbox 2
space usage report 8
space usage switch 8
spawn command 7
threshold percentage 5
totals switch 8
tree list expansion 6
tree switch 5
window components 1
wrapped methods 10

S
SomeNumber 48
special symbols vii
SQL, parsing example 29
support, technical x
symbols used in documentation vii

T
technical support x
typographic conventions vii
62 Advanced Tools

Index
User’s Guide 63

	Contents
	About This Book
	Conventions
	Typographic Conventions
	Special Symbols
	Mouse Buttons and Menus

	Getting Help
	Additional Sources of Information
	Online Cookbook

	Profiling Time and Memory Usage
	Creating an Object Allocation Profiler
	Profiling a Block of Code
	Optimizing the Sample Size

	Analyzing the Object Allocation Profile
	Tree Report
	Adjusting the Cutoff Percentage
	Contracting and Expanding the List
	Spawning a Method Browser
	Totals Report
	Space Usage Report

	Overview of the Code
	Allocation Profiler’s Wrapped Methods
	Time and Space Overhead

	Class Reports
	Overview
	Creating Class Reports
	Selecting the Target Classes

	Locating Coding Errors
	Class Report Options
	Messages Sent but Not Implemented��
	Messages Implemented but Not Sent�
	Method Consistency�
	Subclass Responsibilities Not Implemented�
	Undeclared References�
	Instance Variables Not Referenced�
	Check Comment�
	Backward Compatibility Message Sends�
	Indefinite Backward Compatibility Message Sends�
	Backward Compatibility Class References�

	Estimating Memory Requirements
	Documenting Your Code

	Full Protocol Browser
	Creating a Full Browser
	Displaying the Full Protocol of a Class
	Filtering Messages by Class
	Searching within the Hierarchy
	Scoping Rules

	Parser Compiler
	Overview
	Scanning Source Code
	Parsing
	A Rule has a Name and a Definition
	Rules are Similar to Methods
	Temporary Variables Can be Used
	A Rule Definition is a Series of Alternatives
	An Alternative is a Series of Terms
	A Term is an Action or a Unit-Plus-Qualifier
	A Unit is a Word, Terminal or Parenthesized Definition
	A Terminal is a Single Token
	An Action is a Block or a Special Symbol
	Two Types of Block Syntax are Allowed

	Summary of Grammar for Parsing Methods

	Creating your Own Compiler

	Enhanced Numbers
	Complex Numbers
	Creating an Instance
	Protocol Summary

	Metanumbers
	MetaNumeric Class
	Infinity Class
	Creating an Instance of Infinity
	Protocol Summary

	Infinitesimal Class
	Creating an Instance of Infinitesimal
	Protocol Summary

	NotANumber Class
	Creating an Instance of NotANumber
	Protocol Summary

	SomeNumber Class

	Benchmarks
	Using the Benchmark Interface
	Assembling the Test Suite
	Selection Techniques
	Setting the Report’s Granularity
	Raw Benchmark Measurements�
	Individual Benchmark Statistics�
	Benchmark Suite Statistics�

	Choosing Types of Statistics
	Setting the Report Destination
	Setting the Number of Iterations

	Creating a Benchmark Subclass
	Benchmark Superclass
	SystemBenchmark Subclass
	BenchmakTable Class
	BenchDecompilerTestClass Class

	Parcels
	Index

