
Graph Editor Construction Kit (GrapE)

Tutorial
and

Reference Manual

Jonathan W. Krueger
March 30, 1999

2 of 2 Tutorial and Reference Manual

iii

Table of Contents

1.0 Tutorial... 2
1.1 Creating a DOME Tool Specification Model....................................2
1.2 Specifying the Smalltalk Class Information......................................3

1.2.1 Excursion: Installing a Minimal Tool Specification3
1.3 Defining the Graph Element Classes ..5
1.4 Defining the Editor Tools (Icons, Cursors, and Keyboard Accelera-

tors)6
1.4.1 Creating an Icon ...6
1.4.2 Creating a Cursor ...7
1.4.3 Excursion: Installing a partially specified tool...7

1.5 Defining the Arc Constraints...8
1.5.1 Excursion: Installing the fully specified tool ...9

1.6 Using the Shopping Editor ..9

2.0 Extending the Tutorial Example .. 11
2.1 Adding a List Element...11

2.1.1 Excursion: Installing the new capabilities.. 11
2.2 Multiple columns of Tools ..12
2.3 Adding a Property ...13

2.3.1 Excursion: Installing the new capabilities..14
2.4 Changing the Shape of a Node..14
2.5 Refining Connection Constraints ..19
2.6 Implementing a Tool using Alter ..20

2.6.1 Registration File ...21
2.6.2 Initialize *dome-load-path* Variable...21
2.6.3 Implementation ..21

2.7 Adding a User Defined Property...23

iv

List of Figures
1. Initial DOME Tool Specification model ...2
2. DOME Tool Specification Properties..3
3. Bare-bones Shopping editor ..4
4. Partially functional Shopping editor..8
5. Complete DOME Tool Specification model ...8
6. Fully functional Shopping editor...9
7. GrapE “save” requester, showing the directory /tmp ..10
8. DOME Tool Specification model with Item List Element..12
9. Shopping editor with shopping list..13
10. DOME Tool Specification model with the expectedPrice property......................................14
11. Instance method ShoppingEat>computeCustomPreferredBounds17
12. Instance method ShoppingEat>dispayCustomShapeOn: ..18
13. Instance method ShoppingEat>clipCustom:alongLineTo:..19
14. Fully functional Shopping editor with a customized Eat shape ..19
15. Class method ShoppingPath>canConnect:to:with: ...20
16. User Defined Property model with the actualCost property ...24
17. Inspector focused on the actualCost property ...24

April 9, 1999
DOME Tool Builder’s
Manual
This manual introduces the GrapE graph editor construction kit along with the Meta-
DOME tool specification tool. It covers the basic concepts behind GrapE, which is
implemented in Objectworks/Smalltalk1 release 4. This manual assumes you are famil-
iar with the programming interface of Objectworks/Smalltalk; the Objectworks manuals
can provide some assistance in this area if you need it.

This manual is organized as a detailed tutorial supplemented by reference sections. The
tutorial takes you through the steps of building a new graph editor using MetaDOME,
from concept to implementation. The type of graph chosen is very simple: two types of
nodes and two types of arcs.

GrapE was originally designed as a Petri Net editor. Since then, other graph editors
were built by generalizing the basic object classes, all the while maintaining functioning
editors. Numerous editors have been built using MetaDOME including: Petri Net (exe-
cutable), State-Transition Diagrams, Dataflow Diagrams, Express-G, IDEF-1x and
Coad-Yourdon Object-Oriented Analysis Notation. Once a programmer is somewhat
familiar with MetaDOME, the basics of a new editor can be built in a matter of a few
minutes. After a programmer is familiar with GrapE, tools specific enhancements can
be made relatively swiftly.

1. Objectworks/Smalltalk is a trademark of ParcPlace Systems, Inc.
1 of 26

Tutorial

e
1.0 Tutorial

Our objective is to produce a tool that supports the creation and editing of a special kind
of graph called a Shopping graph. A Shopping graph has two kinds of nodes: the Shop
node and the Eat node, shown at left. There are also two kinds of arcs: the Conditional
arc and the Path arc. A conditional arc denotes a choice of destination, whereas a path
dictate a single direction. As such, there should be at most one Path arc emanating from
any given node. Likewise, Conditional arcs have no meaning if a Path arc is exiting
from the same node.

We will follow these steps to create the new editor:

1. Create a DOME Tool Specification Model

2. Specify the Smalltalk class information

3. Define the graph element classes (nodes and arcs)

4. Define the editor tools (icons and cursors)

5. Define the arc constraints

The tutorial will also show the new editor being used to create, save, and print a Shop-
ping graph.

1.1 Creating a DOME Tool Specification Model

Assuming you have VisualWorks/Smalltalk (Release 4) up and running with DOME
already installed, create a DOME Tool Specification model from the DoMELauncher by
selecting ‘DOME Tool Specification’ from the dialog that appears after pressing th
New button on the launcher. An editor will appear as shown in Figure 1.

Shop

Eat

Path

Condition

FIGURE 1. Initial DOME Tool Specification model
2 of 26 DOME Tool Builder’s Manual

Tutorial

ol-

ate-
d for

e
lled.

ated
does
to-
the

ault.
tion

tton
 what
tion
dow

e.
Eat
hat it
ts
 con-
1.2 Specifying the Smalltalk Class Information

The first thing that should be done when creating a new DOME Tool Specification
model is to set up the installation information. This information is used when a model is
installed into the Smalltalk environment. To edit the information select the context node
and then select Edit->inspect->properties. An editor similar to the one shown in
Figure 1 will be displayed in which you should set the Class Category to ‘DoMETo
Shopping’, the Class Prefix to ‘Shopping’, and the UI Class Prefix to ‘ShoppingUI’.

All generated classes are placed in the Smalltalk category specified by the Class C
gory. If the category does not exist then it will be created when the model is installe
the first time.

The Class Prefix is appended to the front of each Node and Arc class name that is
installed as part of the model. The UI Class Prefix is used in a similar manner to th
Class Prefix but is used for the Controller, Editor, and Graph classes that are insta

The Method Category Suffix is used to name the categories that contain the gener
methods for a class. All user defined methods should be placed in a category that
not end with the method category suffix since it is possible to have MetaDOME au
matically remove all of the methods contained in those categories which end with
Method Category Suffix.

1.2.1 Excursion: Installing a Minimal Tool Specification
This excursion describes the classes and methods that MetaDOME installs by def
Deselect the context node if it is currently selected and then select the menubar op
Special->install tool. The Installation Options dialog appears from which the OK bu
should be pressed. The Installation Options Dialog has several toggles that control
actually gets installed, refer to the MetaDOME users manual for a detailed descrip
of the various options. After a few seconds of computation a Smalltalk Changes win
appears from which you should replay all changes.

The installation creates three classes which constitute the core of the user interfac
ShoppingUIGraph represents the model class whose instances contain Shop and
nodes. ShoppingUIEditor represents the editor class which displays the graph so t
may be edited. ShoppingUIController represents the controller class which interpre
gestures (mouse movement, button clicks and keypresses). The model, editor, and

FIGURE 2. DOME Tool Specification Properties
DOME Tool Builder’s Manual 3 of 26

Tutorial
troller, together with other, default scaffolding such as editing functions, forms the
graph editing application.

Before we examine the methods that were created as part of the installation lets create a
Shopping model and see what core capabilities GrapE offers. From the DOMELauncher
create a ShoppingUI Diagram. By default, a shopping diagram looks very similar to
other DOME tools except there are no tool icons on the toolbar from which to create
model specific nodes and arcs as shown in Figure 3. Granted, it is not yet complete, but
you can see for yourself the default functionality provided by GrapE.

Notice the Note tool. This tool is automatically supplied to all GrapE-based applications
for annotating the graphs. It is a subclass of NamedNode. Take some time now to famil-
iarize yourself with the default editing tools and the default menu (press the middle
mouse button to pop it up). When you are done, close the window in the normal Small-
talk fashion.

To End this excursion, each of the methods that were installed are described in detail in
Table 1.

TABLE 1. Methods installed for bare-bones Shopping tool

Class Method Description

ShoppingUIGraph defaultController-
Class

Specifies the controller class to use when cre-
ating an editor for a shopping graph.

editorClass Specifies the editor class to use when editing a
shopping graph.

arcClasses Returns the arc classes whose instances may
be created as part of the graph.

FIGURE 3. Bare-bones Shopping editor
4 of 26 DOME Tool Builder’s Manual

Tutorial
1.3 Defining the Graph Element Classes

Our application has two types of nodes and two types of arcs. We will create the node
classes first, then the arc classes.

To create the Shop node class:

1. Place a NodeSpec on the graph.

2. Name it ‘Shop’.

3. Set its NamePosition to Center.

4. Set its Corners property to Chorded with a radius factor of 0.22. This will give the
node an octagon appearance.

To create the Eat node class:

1. Place a NodeSpec on the graph.

2. Name it ‘Eat’.

3. Set its NamePosition to Center.

4. Set its Corners property to Rounded

To create the Condition arc class:

1. Place an ArcSpec on the graph.

ShoppingUIGraph
class

newWin-
dowName

Returns the name that the DOMELauncher
will use when the user wishes to create a Shop-
ping model. This method is slightly different
than most of the others in that it is a stub
method which means that you can modify it
and not have to worry about it being over-writ-
ten when another install is done from this
specification.

toolClasses Returns a collection of those classes which can
be created from the editor of a Shopping
graph.

allDefinedClasses Returns a collection of class symbols that were
installed as part of the tool.

ShoppingUIEditor tools Return a collection of tool descriptions that
specify the tools that are available from the
editor.

ShoppingUIController
class

tools This method is very similar to the tools
method on the editor but the returned collec-
tion contains a little more information about
each tool. Eventually the tools method on the
editor will be removed.

TABLE 1. Methods installed for bare-bones Shopping tool

Class Method Description
DOME Tool Builder’s Manual 5 of 26

Tutorial

r
ced on
hen it
torial
 the
rsors

e auto-
d on
 and
 all of
re-
d

para-
 Icon
 to
tall-
ppin-
ly
ou
vious
2. Name it ‘Condition’.

3. Sets its Origin Head to be Always and its style to Filled Square.

To create the Path arc class:

1. Place an ArcSpec on the graph.

2. Name it ‘Path’.

3. Set its Name Presentation to Never.

1.4 Defining the Editor Tools (Icons, Cursors, and Keyboard Accelerators)

In order to endow our editor with the ability to create nodes and arcs specific to ou
Shopping formalism, we need to design some icons and cursors. The icons are pla
the toolbar of the editor while the cursors are used to change the mouse pointer w
is time to create an instance of the object represented by the selected icon. This tu
will take you through the details of creating one icon (for the Condition class), then
rest are up to you. Fortunately, MetaDOME offers a large selection of icons and cu
from which to choose.

The icons and cursors are specified as properties to the Creation Buttons that wer
matically created inside the Tool Palette when the node and arc specs were place
the graph. Use Table 2 for the information necessary to specify the icons, cursors,
keyboard accelerators. Only the Condition and Path Icons need to be created since
the others are already available. To set the icon of cursor, first inspect one of the c
ation buttons, click on the icon or cursor symbol, select an appropriate symbol, an
press OK.

1.4.1 Creating an Icon
To create an icon you need to attempt to set the icon as described in the previous
graph but instead of selecting one of the available icons you need to select the Add
button. After selecting the Add Icon button, the mask editor is opened to allow you
edit your icon. Edit your icon and then press Install when you are happy with it. Ins
ing an icon currently produces some Smalltalk code that is associated with the Sho
gUIEditor class, so provide a name that is a valid Smalltalk method name preferab
appended with ‘Icon’, such as conditionArcIcon. After the icon has been installed y
may close the mask editor. Finally, set the icon by the process described in the pre
paragraph.

TABLE 2. Tool Properties

Class Icon Cursor Key

Shop s

Eat e

Condition c

Path p
6 of 26 DOME Tool Builder’s Manual

Tutorial

6x16
oci-

 infor-
gain,
reated
talled
ce
t have
1.4.2 Creating a Cursor
Creating a cursor is identical to creating an icon except the cursor’s size is kept to 1
while the icon’s size is kept to 24x24. Also, the Smalltalk code for the cursor is ass
ated with the controller class instead of the editor class.

1.4.3 Excursion: Installing a partially specified tool
This excursion describes the classes and methods that MetaDOME installs for the
mation that we have specified to this point. Go ahead and install the specification a
see Table 1 for a description of the new and modified methods. Four classes are c
as part of the installation as one would expect. The only special thing about the ins
classes are who they inherit from. Both Shop and Eat inherit from NamedNode sin
they have names. Path inherits from NetArc since we specified that a path does no
a name and Condition inherits from NamedNetArc.

TABLE 3. Methods installed for partially specified Shopping tool

Class Method Description

ShoppingUIGraph arcClasses It now returns the arc classes that we defined.

ShoppingUIGraph
class

toolClasses It now returns the four tool classes.

allDefinedClasses It now returns symbols for all of the classes
that were installed.

ShoppingUIEditor tools It now returns a description of the tools.

toolBarSpec Returns a description of the toolbar that is used
when editing a Shopping graph.

ShoppingUIController newShop Used to create a Shop node.

newEat Used to create an Eat node.

newCondition Used to create a Condition arc.

newPath Used to create a Path arc.

ShoppingUIController
class

tools It now returns a description of the tools.

ShoppingCondition visibleOriginHead By default the origin head is not visible. This
methods makes it visible.

originHeadStyle The origin head will be a filled square when
displayed.

ShoppingCondition
class

whatAreYou Returns a string that describes generically an
instance of this class.

ShoppingEat radiusFactor Information used for displaying the corner of
the node.

chordedCorners Should the corner be chorded instead of
square?

namePositionPol-
icy

Where should the name be displayed with
respect to the border of the node.

ShoppingEat class containerClasses The classes that can contain an instance of this
class. It is used for constraint enforcement.
DOME Tool Builder’s Manual 7 of 26

Tutorial
Now try the tool a second time. This time, the editor should come up showing the four
tool icons, as shown in Figure 4. You can now create Shop and Eat nodes but you still
cannot create condition and path arcs since we have not specified the constraints for the
arcs yet.

1.5 Defining the Arc Constraints

Now that we are able to create nodes it would be nice if we were able to create arcs also.
To specify the constrains necessary for the Shopping tool we will need to create eight
arc constraints as shown in Figure 4.

The arc constraints for the Condition and Path arcs are very similar as seen in Figure 4
which shows most of the information about the arc constraints except for the reflective-

FIGURE 4. Partially functional Shopping editor

FIGURE 5. Complete DOME Tool Specification model
8 of 26 DOME Tool Builder’s Manual

Tutorial

 pre-
 to

el
ness of the arcs constraints that have the same origin and destination. For these arcs the
reflectivity should be set to false. This prevents a Shop or Eat node from being both the
origin and destination of the same arc.

1.5.1 Excursion: Installing the fully specified tool
This excursion describes the last set of methods that are installed as a result of specify-
ing the arc constraints. Go ahead and install the specification again and see Table 1 for a
description of the new methods. At this point the Shopping tool should be fully opera-
tional.

1.6 Using the Shopping Editor

At this point, you have a fully functioning Shopping editor. Bring up the editor (if you
do not already have it running), and create a graph. You can draw the graph shown in
Figure 14, or you can design your own.

Once you have the graph looking the way you want, try printing it by selecting the
“File->print” menu item with the middle mouse button.

Next, save the shopping graph by choosing the “File->save” menu. You should be
sented with the requester shown in Figure 7. Type in the name of the file you wish
save the graph in and hit return. The cursor will change shape momentarily while the
graph is being written to the file. Close the editor window and open the saved mod

TABLE 4. Methods installed for fully specified Shopping tool

Class Method Description

ShoppingCondition
class

endpointClasses Returns information that is used in constraint
enforcement.

FIGURE 6. Fully functional Shopping editor
DOME Tool Builder’s Manual 9 of 26

Tutorial
from the DOMELauncher. The load meter should show the model being loaded, then
your previous graph should be displayed in the new window.

FIGURE 7. GrapE “save” requester, showing the directory /tmp
10 of 26 DOME Tool Builder’s Manual

Extending the Tutorial Example

 now

s-
 to

ated
erator

 the
scrip-
2.0 Extending the Tutorial Example

In this section we describe various features of MetaDOME and GrapE by extending the
tutorial example. We enhance the Shopping model by adding the following features:

1. Add a shopping list to a shop.

2. Modify the tool column to have two rows of tools instead of just one.

3. Associate an expected price with each item we plan to buy.

4. Modify the display of the Eat node so that it appears to be a fast food restaurant.

5. Refine the connection constraints.

6. Implement a tool using Alter that produces a shopping list.

7. Add a property via the User Defined Property model.

2.1 Adding a List Element

We will first extend the tutorial example to maintain a shopping list of items that we
plan to purchase at each store.

1. Create a List Element and set its name to “Item”. It is a wise practice to give a
description to each node you create in a MetaDOME specification, so go ahead
and give the Item List Element node a description now.

2. Create an Element Indicator and connect it to the Shop NodeSpec.

3. Name the newly created arc “items”. By default, the objects are sorted when di
played. If we didn’t want the items sorted then we could set the sorted property
false.

4. Connect an arc from the List Element to the Element Indicator.

5. Create an Icon and Cursor for the Item Creation Button. For the example we cre
an icon and cursor in the shape of a dollar sign. We also set the keyboard accel
to “i”.

The updated MetaDOME Specification can be seen in Figure 8.

2.1.1 Excursion: Installing the new capabilities
This excursion describes the set of methods that are installed as a result of adding
List Element. Go ahead and install the specification again and see Table 1 for a de
tion of the new methods.

TABLE 5. Methods installed for list element enhancement

Class Method Description

ShoppingItem facetFor: Returns a symbol indicating which compart-
ment of the PartitionedCollection the object
should be placed in if the object’s container
were the given container. An Item can be
placed in the #items facet of a Shop in our
example.

ShoppingItem class containerClasses An item can be placed in a Shop.
DOME Tool Builder’s Manual 11 of 26

Extending the Tutorial Example

 some
 as
e Ele-

o col-
 the
h

 and
e to

n to
Go ahead now and try the tool again. You are now able to add Items to Shop node as
well as move items between Shop nodes. There is one problem though: the name of the
Shop is in the middle of the shopping list for the store. To rectify the situation, set the
Shop’s name position to InsideTop and re-install. Create a new Shop node and add
items to see the new behavior. Also notice how the items are sorted alphabetically
seen in Figure 9. This is the result of setting the sorted property on the arc from th
ment Indicator to the Shop to true.

2.2 Multiple columns of Tools

The next feature we plan to add to the tutorial example is to have the toolbar be tw
umns wide instead of just a single column. We do this because it would be good if
item tool was adjacent to the shop tool since they are used in conjunction with eac
other.

Creating a multi-column toolbar is very easy. Simply inspect the Tool Palette node
set its columns property to two. MetaDOME currently supports a toolbar width of on
three columns. After the columns property is modified then the Tool Palette node
appears with a new Tool Column that is empty. Next move the Item Creation Butto
the second column so that it is adjacent to the Shop Creation Button.

ShoppingShop initializeCompo-
nents

When a shop node is created, this method cre-
ates a facet into which Items are placed.

hasListContent Since the shop node may have components
that are List Elements this method returns true.

TABLE 5. Methods installed for list element enhancement

Class Method Description

FIGURE 8. DOME Tool Specification model with Item List Element
12 of 26 DOME Tool Builder’s Manual

Extending the Tutorial Example
Unfortunately, this will not get us exactly what we want. If we were to install and create
a new Shop model we would notice that the Item creation button is at the top of the sec-
ond column while the Shop creation button appears immediately after the standard tool
buttons. To get the appearance that we desire, we must add the standard tools to the
DOME tool specification via Special-><add std tools> and then order the standard tools
in a fashion similar to existing tools. Do this now.

Next, go ahead and install the tool again. Notice that the toolBarSpec and tools methods
were modified since they describe what the toolbar looks like. Finally, start a new shop
tool and see that the toolbar is now two columns wide.

2.3 Adding a Property

We will next associate an expected price with each item. The price will represent the
number of dollars that we expect to pay for the item. The following steps describe the
process of adding a new property.

1. Select the Property tool and drop it into the Item node.

2. Name the property “expectedPrice”.

3. Inspect the properties of the expectedPrice property.

4. Set its label to “Expected price:”.

5. Set its type to Number.

6. Set it so that it cannot be TBD.

7. Give it an initial value of 0.

The updated DOME Tool Specification can be seen in Figure 8.

FIGURE 9. Shopping editor with shopping list
DOME Tool Builder’s Manual 13 of 26

Extending the Tutorial Example
2.3.1 Excursion: Installing the new capabilities
This excursion describes the set of methods that are installed as a result of adding the
expectedPrice property. Go ahead and install the specification again and see Table 1 for
a description of the new methods. If you wish you can create a new Shop model with
some items and set their price.

2.4 Changing the Shape of a Node

We will modify the appearance of the Eat node to have a facade similar to a fast food
restaurant. When a unique shape for a node is specified, the programmer must imple-
ment methods that compute the size of the shape, draw the shape, and determine where
to clip lines that are attached to the node. MetaDOME generates default methods for
these capabilities when a specification is installed with a custom shape. The following
list describes the steps necessary to customize the shape of a node from the specifica-
tion.

1. Inspect the Appearance properties of the Eat node spec.

TABLE 6. Methods installed for property enhancement

Class Method Description

ShoppingItem expectedPrice The method for retrieving the expected price.

expectedPrice: The method for setting the expected price.

ShoppingItem class localStandard-
Properties

This method returns a set containing defini-
tions of those properties that have been speci-
fied for this class.

FIGURE 10. DOME Tool Specification model with the expectedPrice property
14 of 26 DOME Tool Builder’s Manual

Extending the Tutorial Example
2. Set the name position to inside top. This will allow the name to appear in the sign
that will be on top of the restaurant.

3. Set the border shape to be custom.
We need to install the specification next so the default shape methods are installed. See
Table 1 for a description of the methods that are removed as well as installed.

If you wanted to you could create a new shopping model and see what an Eat node looks
like when the default display routines are used. It looks like a rectangle. As you imple-
ment your own shape routines you should keep in mind that the three routines are
closely related. The display routine and the clipping routine must abide by the bounds
determined by the compute preferred bounds routine. If the display routine determines
its own bounds then the act of re-displaying the node may leave graphic refuse on the
display area. If the clipping routine computes its own bounds then arcs may appear not
to be attached to the node. If ever graphic refuse is on the display area or an arc appears
not to be attached to a node then one or both of these routines are probably implemented
incorrectly.

With that all said, I can now tell you that you will never modify the three generated dis-
play routines. You will actually implement the routines that are called from the gener-
ated routines which are shown in Table 1.

TABLE 7. Methods installed for shape enhancement

Class Method Description

ShoppingEat radiusFactor [Removed since it is not needed.]

chordedCorners: [Removed since it is not needed.]

namePositionPol-
icy

[Removed since it is now the default.]

clip:alongLineTo: Return the point that should be used as the end
point when connecting an arc to this node.

computePre-
ferredBounds

Return the preferred bounds of the node. As a
side effect set the preferredBounds and border-
Shape instance variables.

displayShapeOn: Display the shape of the node on the graphics
context.

TABLE 8. Methods to be implemented in order to support custom shapes

Class Method Description

ShoppingEat clipCustom:alon-
gLineTo:

Return the point that should be used as the end
point when connecting an arc to this node.
DOME Tool Builder’s Manual 15 of 26

Extending the Tutorial Example

s
n
peci-
n -
that

 not

e

 varies
ape
od
The first step is to implement the computeCustomPreferredBounds method. The exist-
ing clipping and display routines will make use of it. It is assumed that the programmer
has some experience with programming in Smalltalk so some of the Smalltalk environ-
ment related aspects will be covered very swiftly.

1. Add the category ‘displaying’ to the ShoppingEat class. The new display routine
will be placed in this new category. It is important to never place any methods i
those categories that end with the method category suffix specified in the tool s
fication, in this case: -MD-gen. If we added a method to a category that ended i
MDgen and later on we did a Special->’clean installed tool’ then we would lose
method. Also, if you modify a method that is in one the categories generated by
MetaDOME then you should move that method to a different category that does
get removed.

2. Create the method computeCustomPreferredBounds. It is very important that th
position of the node be equal to the center of the preferred bounds and that the
bounds be based on the current pushOut value. The value returned by pushOut
depending on the magnification of the graph. Also, be sure to set the borderSh
and preferredBounds instance variables. After you have implemented this meth

computeCustom-
PreferredBounds

Return the preferred bounds of the node. As a
side effect set the preferredBounds and border-
Shape instance variables.

displayCustom-
ShapeOn:

Display the node on the graphics context.

TABLE 8. Methods to be implemented in order to support custom shapes

Class Method Description
16 of 26 DOME Tool Builder’s Manual

Extending the Tutorial Example

 appro-
you should be able to create Eat nodes and notice that the shape’s size seems
priate.

FIGURE 11. Instance method ShoppingEat>computeCustomPreferredBounds
DOME Tool Builder’s Manual 17 of 26

Extending the Tutorial Example
3. Create the method displayCustomShapeOn: to actually draw your custom shape as
shown in Figure 11. The most important part of the display routine is that it must be
based on the preferred bounds of the node.

4. Create the clipping routine if necessary. For this example, I will create a clipping
routine so that all arcs are attached to the threshold of the doorway. Also, the clip-

FIGURE 12. Instance method ShoppingEat>dispayCustomShapeOn:
18 of 26 DOME Tool Builder’s Manual

Extending the Tutorial Example

spec-

m the
ping routine must be based on the preferred bounds of the node. Create the method
clipCustom:alongLineTo: as shown in Figure 11.

After the three display routines are implemented you can create a new shopping model
such as that shown in Figure 14.

2.5 Refining Connection Constraints

If you were to validate the shopping tool that has been implemented so far against the
requirements then you would find that one of the requirements has not been fulfilled.
That incomplete requirement was originally stated as, “...Conditional arcs have no
meaning if a Path arc is exiting from the same node.” Currently, there is no way to
ify this constraint from MetaDOME but now that you have some experience writing
Smalltalk code for a tool it will be a fairly straightforward effort. We will implement
this constraint by making certain that a Constraint and Path arc do not emanate fro
same node.

FIGURE 13. Instance method ShoppingEat>clipCustom:alongLineTo:

FIGURE 14. Fully functional Shopping editor with a customized Eat shape
DOME Tool Builder’s Manual 19 of 26

Extending the Tutorial Example

 can-
ted as
ouple
 that
erated
nnot
ror
d not

 the
y spe-

g

fer to
is-
inte-
To enforce this requirement we will need to implement a method on both the Condi-
tional and Path classes that makes certain that there are only like kind of arcs emanating
from the origin node as seen in Figure 11. The method for the Condition class is identi-
cal to this one. All arc constraints should be implemented by specializing NetArc’s
Connect:to:with: class method. This method is called whenever new arcs are crea
well as when an arc’s origin or destination is moved to another node. There are a c
of important issues to understand when specializing this method. The first issue is
the superclass method must be called since it checks the constraints that were gen
from MetaDOME when the tool was installed. The second issue is that if an arc ca
be connected from node1 to node2 then an explanation should be added to the er
reporter so that the user gets some useful feedback as to why the connection coul
be made.

Sometimes it is more natural to associate the constraint checking mechanism with
node being connected from or to rather than with the arc class. This can be done b
cializing the instance level methods on Node named allowConnectionOf:from: and
allowConnectionOf:to:.

2.6 Implementing a Tool using Alter

This enhancement provides an example of how to integrate a tool into DOME usin
Alter to implement the tool. Specifically, the tool selects those shopping nodes with
items to be purchased and produces an alphabetically organized shopping list. Re
the Alter Programmer’s Reference Manual Writing Tools Appendix for a thorough d
cussion about writing tools. There are three steps necessary to implementing and
grating a tool:

1. Create a Registration File.

2. Initialize the *dome-load-path* variable.

3. Implement the tool in Alter.

FIGURE 15. Class method ShoppingPath>canConnect:to:with:
20 of 26 DOME Tool Builder’s Manual

Extending the Tutorial Example

ld

ple.

 site
i-

i-
* is

al
n
uld
 are
2.6.1 Registration File
The registration file contains a collection of function specifications that describe the
available tools. Each function specification specifies the type of object that the tool can
be applied to, the source file of the tool, and the keyboard accelerator to use to invoke
the tool. DOME must also be told where to find the registration file. This is done by set-
ting the DoMEUserFunctions environment variable. For this example lets assume that
the registration file exists in the /tmp directory, therefore, the variable would be set by
‘setenv DoMEUserFunctions /tmp/userFunctions.dome’ from a csh shell. This wou
imply that the registration file was named “userFunctions.dome”.

The following lines are the contents of the registration file necessary for this exam

[DoMEUserFunctionList
 [DoMEUserFunctionSpec
 functionName: ‘Shopping List’!
 graphType: #ShoppingUIGraph!
 sourceFile: ‘shopping-list.alt’!
 keySequence: ‘tsl’!
]
]

2.6.2 Initialize *dome-load-path* Variable
The *dome-load-path* variable provides a means for the registration file to be less
specific since it allows the source file of a function specification to not be fully spec
fied. DOME will look through the directories specified by the *dome-load-path* var
able for the source file when it comes time to invoke the tool. The *dome-load-path
normally initialized by the ‘.domeinit’ file in the user’s home directory. The following
line of Alter code is sufficient to specify the load path.

(define *dome-load-path* (list “/tmp” “/usr/local/dome/lib”))

2.6.3 Implementation
The implementation for the shopping list tool is fairly simple once you have a firm
understanding of Alter. Keeping a copy of the Alter Programmer’s Reference Manu
close at hand when you are writing a tool will greatly facilitate its implementation. I
order for this example to work correctly, the file containing the implementation sho
be located in the /tmp directory and be named shopping-list.alt. The following lines
the Alter code necessary for implementing a simple tool:

;; Name: shopping-list
;; Purpose:
;; Produce a shopping list of the items to be bought at the various
;; stores.

;; Remember the file into which the shopping list is to be written so that
;; the next time this tool is invoked it will use the same file.
(define shopping-output-file
 (if (bound? shopping-output-file) shopping-output-file nil))

;; Request a file and output the shopping list to the specified file.
(define (shopping-list-main graph)
DOME Tool Builder’s Manual 21 of 26

Extending the Tutorial Example
 (let ((file (if (nil? shopping-output-file)
 (request-new-file-name)
 (request-new-file-name shopping-output-file))))

 (if (not (nil? file))
(begin
 (set! shopping-output-file file)
 (with-output-to-file
 (filename->string file)
 (lambda () (shopping-list-report graph)))))))

;; Loop through the stores writing out the items to be purchased.
(define (shopping-list-report graph)
 (let ((stores (select

 (nodes graph)
 (lambda (shop)
 (and
 (is-kind-of? shop ShoppingShop)
 (not (= 0 (length (get-property “items” shop)))))))))

 (if (= 0 (length stores))
(warn “There are no stores with items to be purchased!”)
(begin
 (display “Shopping List”)
 (newline)
 (display “=============”)
 (newline)
 (show-progress-for-each
 “Processing shops”
 shopping-list-output-shop
 (sort stores (lambda (x y) (string<? (name x) (name y)))))))))

;; Write out the store name and the list of items to be purchased.
(define (shopping-list-output-shop shop)
 (let ((shopname (name shop)))
 (newline)
 (display “ “)
 (display shopname)
 (newline)
 (display “ “)
 (do ((count (length shopname) (- count 1)))

((= 0 count))
 (display “-”))
 (newline)
 (for-each
 (lambda (item)
 (display “ “)
 (display (name item))
 (newline))
 (sort
 (get-property “items” shop)
 (lambda (x y) (string<? (name x) (name y)))))))
22 of 26 DOME Tool Builder’s Manual

Extending the Tutorial Example

like
w
ME
efined
prop-
the
e

her.

 but
ol
el
ened

tool
user
e eas-
;; Point DOME towards the entry point for this user-defined tool.
shopping-list-main

To execute the tool, create a ShoppingUI model, create some shops with some items to
be purchased, and select Tools->User Defined->Shopping List. The following list is
representative output from the tool:

Shopping List
==========

 Ace Hardware

 socket set

 Dayton’s

 pants
 shirt

2.7 Adding a User Defined Property

Adding a property via a User Defined Property model isn’t really an enhancement
the other enhancements that have been described so far but it is worthwhile to kno
how one can go about adding properties to a model without modifying the MetaDO
specification of the model. There are two steps necessary to add and use a user d
property. You must first create a User Defined Property model with the necessary
erties defined and then you must associate the User Defined Property model with
model that will actually make use of the user defined properties. Lets first create th
User Defined Property model.

1. Create a User Defined Property model via the create button of the DOME launc

2. Merge the tool specification of the Shopping model into the newly created User
Defined Property model by selecting “File->merge from”. This doesn’t actually
merge the nodes of the tool specification with the User Defined Property model
merely links the tool specification to the model via its filename. A view of the to
specification is automatically created as part of the User Defined Property mod
when the merge is done as well as when the User Defined Property model is op
for editing.

3. Add the new property to the Item List Element node. Simply select the property
and drop a property on the Item List Element node as shown in Figure 16. The
defined properties are shown with <> brackets around them to make them mor
ily recognized. The new property should have the following characteristics, as
shown in Figure 17:

• Name => “actualCost”

• Label =>”Actual cost:”

• Show after => expectedPrice

• Type => Number

• Can Be TBD => false
DOME Tool Builder’s Manual 23 of 26

Extending the Tutorial Example
• Initialize => true

Save the model after you are done specifying the property. Now that the model has been
saved it can be made use of by a Shopping model. To associate a user defined property
model with the shopping model, you must inspect the context node of the shopping
model and add the User Defined Property file as a schema file of the shopping model.
Select the Property Schema category from the inspector and add the file to the schema
files property. To prove that the property is now available create a Shop node with an

FIGURE 16. User Defined Property model with the actualCost property

FIGURE 17. Inspector focused on the actualCost property
24 of 26 DOME Tool Builder’s Manual

Extending the Tutorial Example
item in it and inspect it. The item will now have two properties, expectedPrice and actu-
alCost.
DOME Tool Builder’s Manual 25 of 26

Extending the Tutorial Example
26 of 26 DOME Tool Builder’s Manual

Index
A
AligningNamedNode4

C
controller3
cursors6

I
icons6

M
model3

P
printing9

single page9

S
saving a graph9
scaffolding4
27 of 28

Index
28 of 28

	1.0 Tutorial
	1.1 Creating a DOME Tool Specification Model
	1.2 Specifying the Smalltalk Class Information
	1.2.1 Excursion: Installing a Minimal Tool Specifi...

	1.3 Defining the Graph Element Classes
	1.4 Defining the Editor Tools (Icons, Cursors, and...
	1.4.1 Creating an Icon
	1.4.2 Creating a Cursor
	1.4.3 Excursion: Installing a partially specified ...

	1.5 Defining the Arc Constraints
	1.5.1 Excursion: Installing the fully specified to...

	1.6 Using the Shopping Editor

	2.0 Extending the Tutorial Example
	2.1 Adding a List Element
	2.1.1 Excursion: Installing the new capabilities

	2.2 Multiple columns of Tools
	2.3 Adding a Property
	2.3.1 Excursion: Installing the new capabilities

	2.4 Changing the Shape of a Node
	2.5 Refining Connection Constraints
	2.6 Implementing a Tool using Alter
	2.6.1 Registration File
	2.6.2 Initialize *dome-load-path* Variable
	2.6.3 Implementation

	2.7 Adding a User Defined Property

