Graph Editor Construction Kit (GrapE)

Tutorial
and
Reference Manual

Jonathan W. Krueger

March 30, 1999

2o0f 2 Tutorial and Reference Manual

Table of Contents

IO T U o = SR 2
1.1 CreatingaDOME Tool Specification Moddlcccevvevircieennen. 2
1.2 Specifying the Smalltalk Class Information.............ccceeevvveernenenne. 3

1.2.1 Excursion: Installing a Minimal Tool Specificationccoceeevenerenenenne 3
1.3 Defining the Graph Element Classes........cccoceveevecceeseene e 5
1.4 Defining the Editor Tools (Icons, Cursors, and Keyboard Accelera-

tors)6

1.4.1 Creating @N ICONccoiieeiierere et b e sbe e s e e 6

1.4.2 Creating & CUISOFc.coouieeiriereriesteste et seeseeeeseseesessesbe s e ssesbesbesaeseseaneens 7

1.4.3 Excursion: Installing a partially specified tool............ccccoveroneninenicinnienn, 7
1.5 Defining the Arc CONSLraiNtS..........ccveeereeresieeseenieeeeseeseseeseeseens 8

1.5.1 Excursion: Installing the fully specified toolccccevvreereieerrecnesieneens 9
1.6 Using the Shopping EdItorcccocieiiciie e 9

2.0 Extending the Tutorial Example........ccccoeviiieniennienninee 11

2.1 AddingaList Element..........ccccooieiiieiie i 11
2.1.1 Excursion: Installing the new capabilities...........cocoveeinienininiiinesee 11
2.2 Multiple columns Of TOOISccceveeiieiere e 12
2.3 Adding @PrOPertycccoveceiiere e 13
2.3.1 Excursion: Installing the new capabilities...........cccceveevvceccrincn s 14
2.4 Changing the Shape of aNode..........ccceveveiie i, 14
2.5 Refining Connection CONSIraiNtS.........ccveveeieerieeieeseeseeee e e 19
2.6 Implementing aTool USING AILENc.ccovveievieece e 20
2.6.1 ReQISLIatiON Fil@....ccceeeeeceee s 21
2.6.2 Initialize *dome-load-path* Variable........c.cccovrvrivvineninnercereecee 21
2.6.3 IMPIEMENLALIONeceeveeieeiesiee et 21
2.7 Adding aUser Defined Propertycccccceeveeccieevee s, 23

List of Figures

1. Initiadl DOME Tool Specification MOCE!ccoeoeeieiiienirire e 2

2. DOME Tool SpecifiCation Properties.........ccovvirireiiriesieierseeseseesesresesseseeseseesesssensssessessens 3

3. Bare-bones Shopping €itOroieiiieeeseceee e e s 4

4, Partialy functional Shopping EitOr.........cccviereieriree e e 8

5. Complete DOME Tool Specification MOde!coooeeiririniiireie e 8

6. Fully functional ShopPIiNG EITON........c.i i et 9

7. GrapE “save” requester, showing the direCtory /tMP ... 10
8. DOME Tool Specification model with Item List Element.............cceeeiiiiiiiiiiiiiiiceeeeeen 12

9. Shopping editor with SHOPPING lIST........eeeiiiiiiiie e 13
10. DOME Tool Specification model with the expectedPrice property..........cocccuvveeeeeeeeeeernnnnne 14
11. Instance method ShoppingEat>computeCustomPreferredBoundsccccceieiiieniiiinnnes 17
12. Instance method ShoppingEat>dispayCustomShapeOn:ceeeiiaiiiiiiiiiiiiiieeee e 18
13. Instance method ShoppingEat>clipCustom:alongLineTo:.........ccuuiiiiiiiieiiiiiiiiiiieeeeee e 19
14. Fully functional Shopping editor with a customized Eat Shapeccccceeeiiiiiiiiiiiiiceieeeeenen. 19
15. Class method ShoppingPath>canConnect:to:With:ccccooiiiiiiii e 20
16. User Defined Property model with the actualCost Propertyccccceeeiiiiiiiiiieiieneeeeneeee 24
17. Inspector focused on the actualCoOSt PrOPEITYcooeiiiiiiiiiiiiie et 24

April 9, 1999

DOME Tool Builder’s
Manual

This manual introduces the GrapE graph editor construction kit along with the Meta-
DOME tool specification tool. It covers the basic concepts behind GrapE, which is
implemented in Objectworks/Smalltalk? release 4. This manual assumes you are famil-
iar with the programming interface of Objectworks/Smalltalk; the Objectworks manuals
can provide some assistance in thisareaif you need it.

Thismanual is organized as a detailed tutorial supplemented by reference sections. The
tutorial takes you through the steps of building a new graph editor using MetaDOME,
from concept to implementation. The type of graph chosen is very smple: two types of
nodes and two types of arcs.

GrapE was originally designed as a Petri Net editor. Since then, other graph editors
were built by generalizing the basic object classes, all the while maintaining functioning
editors. Numerous editors have been built using MetaDOME including: Petri Net (exe-
cutable), State-Transition Diagrams, Dataflow Diagrams, Express-G, IDEF-1x and
Coad-Yourdon Object-Oriented Analysis Notation. Once a programmer is somewhat
familiar with MetaDOME, the basics of a new editor can be built in a matter of afew
minutes. After a programmer isfamiliar with GrapE, tools specific enhancements can
be made relatively swiftly.

1. Objectworks/Smalltalk is atrademark of ParcPlace Systems, Inc.

1 of 26

Tutorial

1.0 Tutorial

Our objectiveisto produce atool that supports the creation and editing of a special kind
of graph called a Shopping graph. A Shopping graph has two kinds of nodes: the Shop
node and the Eat node, shown at |eft. There are also two kinds of arcs: the Conditional
arc and the Path arc. A conditional arc denotes a choice of destination, whereas a path
dictate asingle direction. As such, there should be at most one Path arc emanating from
any given node. Likewise, Conditional arcs have no meaning if a Path arc is exiting
from the same node.

Eat We will follow these steps to create the new editor:

1. CreateaDOME Tool Specification Model
Specify the Smalltalk class information

Define the graph element classes (nodes and arcs)
Define the editor tools (icons and cursors)

Define the arc constraints

Path

Condi!|on

ok~ 0D

The tutorial will also show the new editor being used to create, save, and print a Shop-
ping graph.

1.1 Creating a DOME Tool Specification Model

Assuming you have VisualWorks/Smalltalk (Release 4) up and running with DOME
already installed, create a DOME Tool Specification model from the DoM EL auncher by
selecting ‘DOME Tool Specification’ from the dialog that appears after pressing the
New button on the launcher. An editor will appear as shown in Figure 1.

_.| <an unsaved MetaDoME Tool Specification> (100%) [ia]=]

(File ¥) (Edit ¥ | Special v | Layout W) (Window ¥) (Help ¥)

4] T»]]

é\ Mollame

! Category: MetaDolE - Trial

Element Prefix: Experimental
. Ul Prefix: Experimental J

1 |(TEED| 1B 4| L
BIp|P|D

FIGURE 1. Initial DOME Tool Specification model

2 of 26 DOME Tool Builder’s Manual

Tutorial

1.2

Specifying the Smalltalk Class Information

Thefirst thing that should be done when creating a new DOME Tool Specification

model isto set up the installation information. Thisinformation is used when amodel is
installed into the Smalltalk environment. To edit the information sel ect the context node

and then select Edit->inspect->properties. An editor similar to the one shown in

Figure 1 will be displayed in which you should set the Class Category to ‘DoMETool-
Shopping’, the Class Prefix to ‘Shopping’, and the Ul Class Prefix to ‘ShoppingUlI'.

All generated classes are placed in the Smalltalk category specified by the Class Cate-
gory. If the category does not exist then it will be created when the model is installed for
the first time.

The Class Prefix is appended to the front of each Node and Arc class name that is
installed as part of the model. The Ul Class Prefix is used in a similar manner to the
Class Prefix but is used for the Controller, Editor, and Graph classes that are installed.

The Method Category Suffix is used to name the categories that contain the generated
methods for a class. All user defined methods should be placed in a category that does
not end with the method category suffix since it is possible to have MetaDOME auto-
matically remove all of the methods contained in those categories which end with the
Method Category Suffix.

| MetaDoME Tool Specification Properties | .| -

Ham

e: |
Category 7] Revert] [|_Apply |

Class Category:E DoMETool-Shopping
CQass Prefix:E_Shopping
Method category suffix:E -mDgen
Ul Class Prefix: & _Shoppingll

FIGURE 2.

121

DOME Tool Specification Properties

Excursion: Installing a Minimal Tool Specification

This excursion describes the classes and methods that MetaDOME installs by default.
Deselect the context node if it is currently selected and then select the menubar option
Special->install tool. The Installation Options dialog appears from which the OK button
should be pressed. The Installation Options Dialog has several toggles that control what
actually gets installed, refer to the MetaDOME users manual for a detailed description
of the various options. After a few seconds of computation a Smalltalk Changes window
appears from which you should replay all changes.

The installation creates three classes which constitute the core of the user interface.
ShoppingUIGraph represents the model class whose instances contain Shop and Eat
nodes. ShoppingUIEditor represents the editor class which displays the graph so that it
may be edited. ShoppingUIController represents the controller class which interprets
gestures (mouse movement, button clicks and keypresses). The model, editor, and con-

DOME Tool Builder’s Manual 3 of 26

Tutorial

troller, together with other, default scaffolding such as editing functions, forms the
graph editing application.

Before we examine the methods that were created as part of the installation lets create a
Shopping model and see what core capabilities GrapE offers. From the DOMEL auncher
create a ShoppingU1 Diagram. By default, a shopping diagram looks very similar to
other DOME tools except there are no tool icons on the toolbar from which to create
model specific nodes and arcs as shown in Figure 3. Granted, it is not yet complete, but
you can see for yourself the default functionality provided by GrapE.

_.i <an unsaved ShoppingUl Diagram> (100%) | ..i Al

[File ¥) [Edit ¥) [Special ¥) [Layout ¥) (Window ¥) [Help ¥)

FS)
[« Tell

FIGURE 3. Bare-bones Shopping editor

Notice the Notetool. Thistool isautomatically supplied to all GrapE-based applications
for annotating the graphs. It is a subclass of NamedNode. Take some time now to famil-
iarize yourself with the default editing tools and the default menu (press the middie

mouse button to pop it up). When you are done, close the window in the normal Small-

talk fashion.
To End this excursion, each of the methods that were installed are described in detail in
Table 1.
TABLE 1. Methods installed for bare-bones Shopping tool
Class Method Description
ShoppingUIGraph defaultController- | Specifies the controller classto use when cre-
Class ating an editor for a shopping graph.
editorClass Specifiesthe editor classto use when editing a
shopping graph.
arcClasses Returns the arc classes whose instances may
be created as part of the graph.

4 of 26 DOME Tool Builder’s Manual

Tutorial

TABLE 1.

1.3

Methods installed for bare-bones Shopping tool

Class Method Description
ShoppingUIGraph newWin- Returns the name that the DOM EL auncher
class dowName will use when the user wishes to create a Shop-

ping model. This method is slightly different
than most of the othersin that it isa stub
method which means that you can modify it
and not have to worry about it being over-writ-
ten when another install is done from this
specification.

tool Classes Returnsa collection of those classeswhich can
be created from the editor of a Shopping

graph.

alDefinedClasses | Returnsacollection of class symbolsthat were
installed as part of the tool.

ShoppingUI Editor tools Return a collection of tool descriptions that
specify the tools that are available from the
editor.

ShoppingUIController | tools This method is very similar to the tools

class method on the editor but the returned collec-

tion contains a little more information about
each tool. Eventually the tools method on the
editor will be removed.

Defining the Graph Element Classes

Our application has two types of nodes and two types of arcs. We will create the node
classesfirst, then the arc classes.

To create the Shop node class:

1. Place a NodeSpec on the graph.

2. Name it ‘Shop’.

3. Set its NamePosition ©Genter.

4. Setits Corners property @horded with a radius factor d.22. This will give the

node an octagon appearance.
To create the Eat node class:

1. Place a NodeSpec on the graph.
2. Name it ‘Eat’.

3. Set its NamePosition ©Genter.

4. Set its Corners property Rounded

To create the Condition arc class:

1. Place an ArcSpec on the graph.

DOME Tool Builder’s Manual 5 of 26

Tutorial

2. Name it ‘Condition’.
3. Sets its Origin Head to bdways and its style td-illed Square.

To create the Path arc class:

1. Place an ArcSpec on the graph.
2. Name it ‘Path’.
3. Set its Name PresentationNever.

1.4 Defining the Editor Tools (Icons, Cursors, and Keyboard Accelerators)
In order to endow our editor with the ability to create nodes and arcs specific to our
Shopping formalism, we need to design some icons and cursors. The icons are placed on
the toolbar of the editor while the cursors are used to change the mouse pointer when it
is time to create an instance of the object represented by the selected icon. This tutorial
will take you through the details of creating one icon (for the Condition class), then the
rest are up to you. Fortunately, MetaDOME offers a large selection of icons and cursors
from which to choose.
The icons and cursors are specified as properties to the Creation Buttons that were auto-
matically created inside the Tool Palette when the node and arc specs were placed on
the graph. Use Table 2 for the information necessary to specify the icons, cursors, and
keyboard accelerators. Only the Condition and Path Icons need to be created since all of
the others are already available. To set the icon of cursor, first inspect one of the cre-
ation buttons, click on the icon or cursor symbol, select an appropriate symbol, and
press OK.
TABLE 2. Tool Properties
Class Icon Cursor Key
Shop () o S
Eat) (] e
Condition — + c
1.4.1 Creating an Icon
To create an icon you need to attempt to set the icon as described in the previous para-
graph but instead of selecting one of the available icons you need to select the Add Icon
button. After selecting the Add Icon button, the mask editor is opened to allow you to
edit your icon. Edit your icon and then press Install when you are happy with it. Install-
ing an icon currently produces some Smalltalk code that is associated with the Shoppin-
gUIEditor class, so provide a name that is a valid Smalltalk method name preferably
appended with ‘lcon’, such as conditionArclcon. After the icon has been installed you
may close the mask editor. Finally, set the icon by the process described in the previous
paragraph.
6 of 26 DOME Tool Builder’s Manual

Tutorial

1.4.2

1.4.3

Creating a Cursor

Creating a cursor is identical to creating an icon except the cursor’s size is kept to 16x16
while the icon’s size is kept to 24x24. Also, the Smalltalk code for the cursor is associ-
ated with the controller class instead of the editor class.

Excursion: Installing a partially specified tool

This excursion describes the classes and methods that MetaDOME installs for the infor-
mation that we have specified to this point. Go ahead and install the specification again,
see Table 1 for a description of the new and modified methods. Four classes are created
as part of the installation as one would expect. The only special thing about the installed
classes are who they inherit from. Both Shop and Eat inherit from NamedNode since
they have names. Path inherits from NetArc since we specified that a path does not have

a name and Condition inherits from NamedNetArc.

TABLE 3.

Methods installed for partially specified Shopping tool

Class Method Description
ShoppingUIGraph arcClasses It now returns the arc classes that we defined.
ShoppingUIGraph toolClasses It now returns the four tool classes.

class

alDefinedClasses

It now returns symbols for all of the classes
that were installed.

ShoppingUI Editor tools It now returns a description of the tools.
toolBarSpec Returns adescription of thetoolbar that isused
when editing a Shopping graph.
ShoppingUI Controller newsShop Used to create a Shop node.
newEat Used to create an Eat node.

newCondition

Used to create a Condition arc.

newPath Used to create a Path arc.
ShoppingUIController | tools It now returns a description of the tools.
class
ShoppingCondition visibleOriginHead | By default the origin head is not visible. This
methods makesit visible.
originHeadStyle The origin head will be afilled square when
displayed.
ShoppingCondition whatAreYou Returns a string that describes generically an
class instance of this class.
ShoppingEat radiusFactor Information used for displaying the corner of
the node.
chordedCorners Should the corner be chorded instead of
square?
namePositionPol- | Where should the name be displayed with
icy respect to the border of the node.
ShoppingEat class containerClasses The classes that can contain an instance of this

class. It isused for constraint enforcement.

DOME Tool Builder’'s Manual

7 of 26

Tutorial

Now try the tool a second time. Thistime, the editor should come up showing the four
tool icons, as shown in Figure 4. You can now create Shop and Eat nodes but you till
cannot create condition and path arcs since we have not specified the constraints for the

arcs yet.

_.iparual shop (100%) | -'i -1
[File ¥) [Edit 7) [Spemal G | yout W) (Window ¥) (Help ¥)
3
Tlote,
O
[

I il

FIGURE 4. Partially functional Shopping editor

1.5 Defining the Arc Constraints

Now that we are able to create nodesit would be nice if we were ableto create arcs also.
To specify the constrains necessary for the Shopping tool we will need to create eight
arc constraints as shown in Figure 4.

_.| shopping.metadome {100%) [ia]=]

(File ¥) (Edit ¥ | Special v | Layout W) (Window ¥) (Help ¥)

shopping metadome

Category: DolETool-Shopping Conditdon

Element Prefix: Shopping
Ul Prefix: ShoppingUl

L

Tool Palette
Path[m:1] Path[m:1]

i
Condition —Path[m:1]
= ShoP [y Path[m]

Zonditon[1:n]
Condition[1:n]

Condition[1:n] Condition[1:n]

e ETRD

i

FIGURE 5. Complete DOME Tool Specification model

The arc constraints for the Condition and Path arcs are very similar as seenin Figure 4
which shows most of the information about the arc constraints except for the reflective-

8 of 26 DOME Tool Builder’s Manual

Tutorial

151

ness of the arcs constraints that have the same origin and destination. For these arcs the
reflectivity should be set to false. This prevents a Shop or Eat node from being both the
origin and destination of the same arc.

Excursion: Installing the fully specified tool

This excursion describes the last set of methods that are installed as a result of specify-
ing the arc constraints. Go ahead and install the specification again and see Table 1 for a
description of the new methods. At this point the Shopping tool should be fully opera-
tional.

TABLE 4.

1.6

Methods installed for fully specified Shopping tool

Class Method Description

ShoppingCondition endpointClasses Returns information that is used in constraint
class enforcement.

Using the Shopping Editor

At this point, you have a fully functioning Shopping editor. Bring up the editor (if you
do not already have it running), and create a graph. You can draw the graph shown in
Figure 14, or you can design your own.

_nirnal shop (100%) | "i : I

[File ¥) [Edit 7) [Spemal G | Layout 7) (Window ¥) (Help ¥)

#2\?
4] T»]]

3 T G

<1230 ==12:30 hongry

o Taco Bell @ Potato 2) @adio Shack)

¥

KN I

FIGURE 6.

Fully functional Shopping editor

Once you have the graph looking the way you want, try printing it by selecting the
“File->print” menu item with the middle mouse button.

Next, save the shopping graph by choosing the “File->save” menu. You should be pre-
sented with the requester shown in Figure 7. Type in the name of the file you wish to
save the graph in and méturn. The cursor will change shape momentarily while the
graph is being written to the file. Close the editor window and open the saved model

DOME Tool Builder’s Manual 9 of 26

Tutorial

from the DOMEL auncher. The |oad meter should show the model being loaded, then
your previous graph should be displayed in the new window.

_.iSaveﬂs B E

Path: (tmp v)(vois)

Ale: haliday.shop,

(B 11 -unix o
il checknews-cycle-tap %
-

il console.log

il console.log.log

& gsrv10053

il gsrvB030
srm.log =S

KN I

B T —
: -

FIGURE 7. GrapE “save” requester, showing the directory /tmp

10 of 26 DOME Tool Builder’s Manual

Extending the Tutorial Example

2.0

Extending the Tutorial Example

21

211

In this section we describe various features of MetaDOME and GrapE by extending the
tutorial example. We enhance the Shopping model by adding the following features:
Add ashopping list to a shop.

Modify the tool column to have two rows of toolsinstead of just one.

Associate an expected price with each item we plan to buy.

Modify the display of the Eat node so that it appears to be a fast food restaurant.
Refine the connection constraints.

Implement atool using Alter that produces a shopping list.

Add aproperty viathe User Defined Property model.

N o o bk w DN PR

Adding a List Element

We will first extend the tutorial example to maintain a shopping list of items that we
plan to purchase at each store.

1. Create a List Element and set its name to “Item”. It is a wise practice to give a
description to each node you create in a MetaDOME specification, so go ahead now
and give the Item List Element node a description now.

2. Create an Element Indicator and connect it to the Shop NodeSpec.

3. Name the newly created arc “items”. By default, the objects are sorted when dis-
played. If we didn't want the items sorted then we could set the sorted property to
false.

4. Connect an arc from the List Element to the Element Indicator.

5. Create an Icon and Cursor for the Item Creation Button. For the example we created
an icon and cursor in the shape of a dollar sign. We also set the keyboard accelerator
to “i”.

The updated MetaDOME Specification can be seen in Figure 8.

Excursion: Installing the new capabilities

This excursion describes the set of methods that are installed as a result of adding the
List Element. Go ahead and install the specification again and see Table 1 for a descrip-
tion of the new methods.

TABLE 5.

Methods installed for list element enhancement

Class Method Description

Shoppingltem facetFor: Returns a symbol indicating which compart-
ment of the PartitionedCollection the object
should be placed in if the object’s container
were the given container. An Item can be
placed in the #items facet of a Shop in our
example.

Shoppingltem class containerClasses An item can be placed in a Shop.

DOME Tool Builder’s Manual 11 of 26

Extending the Tutorial Example

_-i shopping.metadome {100%) |4 i Al

[File 7] [Edit 7) [Spemal G | Layout 7) (Window ¥) (Help ¥)
; HOOLEEE)

shopping metadome
%\ Category: DolETool-Shopping Condition
! Element Prefix: Shopping

Ul Prefix: ShoppingUl

4] T»]]

Tool Palerte

iterns

Condition[1:n]

KD |O|IB(m|m4, |2
3p||P|D

i Ttem Condition[1:n] Condition[1:n]
: |
| e ES
] > I
] J 0|l
FIGURE 8. DOME Tool Specification model with Item List Element
TABLE 5. Methods installed for list element enhancement

2.2

Class Method Description
ShoppingShop initializeCompo- When a shop node is created, this method cre-
nents ates afacet into which Items are placed.
hasListContent Since the shop node may have components
that are List Elements this method returns true.

Go ahead now and try the tool again. You are now able to add Items to Shop node as

well as move items between Shop nodes. There is one problem though: the name of the

Shop isin the middle of the shopping list for the store. To rectify the situation, set the

Shop’s hame position to InsideTop and re-install. Create a new Shop node and add some
items to see the new behavior. Also notice how the items are sorted alphabetically as
seen in Figure 9. This is the result of setting the sorted property on the arc from the Ele-
ment Indicator to the Shop to true.

Multiple columns of Tools

The next feature we plan to add to the tutorial example is to have the toolbar be two col-
umns wide instead of just a single column. We do this because it would be good if the
item tool was adjacent to the shop tool since they are used in conjunction with each
other.

Creating a multi-column toolbar is very easy. Simply inspect the Tool Palette node and
set its columns property to two. MetaDOME currently supports a toolbar width of one to
three columns. After the columns property is modified then the Tool Palette node
appears with a new Tool Column that is empty. Next move the Item Creation Button to
the second column so that it is adjacent to the Shop Creation Button.

12 of 26

DOME Tool Builder’'s Manual

Extending the Tutorial Example

_.i * <an unsaved ShoppingUl Diagram> {(100%) [ia]=]
File ¥) [Edit ¥) [Special ¥) [Layout ¥) (Window ¥) [Help ¥)
k j—
@ B
@ :NoName: E
=
£
! blouse
Mate crystal vase
- perfume
-
[
—
- i
—% Jlal Tv] I

FIGURE 9.

2.3

Shopping editor with shopping list

Unfortunately, thiswill not get us exactly what we want. If we were to install and create
anew Shop model we would naotice that the Item creation button is at the top of the sec-
ond column while the Shop creation button appears immediately after the standard tool
buttons. To get the appearance that we desire, we must add the standard tools to the
DOME tool specification via Special-><add std tools> and then order the standard tools
in afashion similar to existing tools. Do this now.

Next, go ahead and install the tool again. Notice that the tool Bar Spec and tools methods
were modified since they describe what the toolbar looks like. Finally, start a new shop
tool and see that the toolbar is now two columns wide.

Adding a Property

We will next associate an expected price with each item. The price will represent the
number of dollars that we expect to pay for the item. The following steps describe the
process of adding a new property.

Select the Property tool and drop it into the Item node.

Name the property “expectedPrice”.

Inspect the properties of the expectedPrice property.

Set its label to “Expected price:”.

Set its type to Number.

Set it so that it cannot be TBD.

Give it an initial value of 0.

N o g~ w DN PR

The updated DOME Tool Specification can be seen in Figure 8.

DOME Tool Builder’s Manual 13 of 26

Extending the Tutorial Example

_-i shopping.metadome {100%) |4 i Al

[File 7] [Edit 7) [Spemal G | Layout 7) (Window ¥) (Help ¥)
; HOOLEEE)

shopping metadome
%\ Category: DolETool-Shopping Condition
! Element Prefix: Shopping

Ul Prefix: ShoppingUl

4] T»]]

Tool Palerte

iterns

Condition[1:n]

KD |O|IB(m|m4, |2
3p||P|D

Condition[1:n] Condition[1:n]

T

Irem

.
ﬁ e [1

FIGURE 10.

23.1

DOME Tool Specification model with the expectedPrice property

Excursion: Installing the new capabilities

This excursion describes the set of methods that are installed as aresult of adding the
expectedPrice property. Go ahead and install the specification again and see Table 1 for
a description of the new methods. If you wish you can create a new Shop model with
some items and set their price.

TABLE 6.

(]

2.4

Methods installed for property enhancement

Class Method Description

Shoppingltem expectedPrice The method for retrieving the expected price.

expectedPrice: The method for setting the expected price.

Shoppingltem class local Standard- This method returns a set containing defini-
Properties tions of those properties that have been speci-
fied for this class.

Changing the Shape of a Node

We will modify the appearance of the Eat node to have afacade similar to afast food
restaurant. When a unique shape for anode is specified, the programmer must imple-
ment methods that compute the size of the shape, draw the shape, and determine where
to clip lines that are attached to the node. MetaDOME generates default methods for
these capabilities when a specification is installed with a custom shape. The following
list describes the steps necessary to customize the shape of a node from the specifica
tion.

1. Inspect the Appearance properties of the Eat node spec.

14 of 26

DOME Tool Builder’'s Manual

Extending the Tutorial Example

2. Set the name position to inside top. Thiswill allow the name to appear in the sign
that will be on top of the restaurant.

3. Set the border shape to be custom.
We need to install the specification next so the default shape methods are installed. See
Table 1 for a description of the methods that are removed as well as installed.

TABLE 7.

Methods installed for shape enhancement

Class Method Description

ShoppingEat radiusFactor [Removed sinceit is not needed.]

chordedCorners: [Removed sinceit is not needed.]

namePositionPol- | [Removed sinceit is now the default.]
icy

clip:alongLineTo: | Returnthe point that should be used asthe end
point when connecting an arc to this node.

computePre- Return the preferred bounds of the node. Asa
ferredBounds side effect set the preferredBounds and border-
Shape instance variables.

displayShapeOn: Display the shape of the node on the graphics
context.

If you wanted to you could create a new shopping model and see what an Eat node looks
like when the default display routines are used. It looks like arectangle. Asyou imple-
ment your own shape routines you should keep in mind that the three routines are
closely related. The display routine and the clipping routine must abide by the bounds
determined by the compute preferred bounds routine. If the display routine determines
its own bounds then the act of re-displaying the node may leave graphic refuse on the
display area. If the clipping routine computes its own bounds then arcs may appear not
to be attached to the node. If ever graphic refuseis on the display area or an arc appears
not to be attached to a node then one or both of these routines are probably implemented
incorrectly.

With that all said, | can now tell you that you will never modify the three generated dis-
play routines. You will actually implement the routines that are called from the gener-
ated routines which are shown in Table 1.

TABLE 8.

Methods to be implemented in order to support custom shapes

Class Method Description
ShoppingEat clipCustom:alon- Return the point that should be used asthe end
gLineTo: point when connecting an arc to this node.

DOME Tool Builder’s Manual 15 of 26

Extending the Tutorial Example

TABLE 8.

Methods to be implemented in order to support custom shapes

Class Method Description

computeCustom- Return the preferred bounds of the node. Asa
PreferredBounds side effect set the preferredBounds and border-
Shape instance variables.

displayCustom- Display the node on the graphics context.
ShapeOn:

Thefirst step isto implement the computeCustomPreferredBounds method. The exist-
ing clipping and display routines will make use of it. It is assumed that the programmer
has some experience with programming in Smalltalk so some of the Smalltalk environ-
ment related aspects will be covered very swiftly.

1. Add the category ‘displaying’ to the ShoppingEat class. The new display routines
will be placed in this new category. It is important to never place any methods in
those categories that end with the method category suffix specified in the tool speci-
fication, in this case: -MD-gen. If we added a method to a category that ended in -
MDgen and later on we did a Special->'clean installed tool’ then we would lose that
method. Also, if you modify a method that is in one the categories generated by
MetaDOME then you should move that method to a different category that does not
get removed.

2. Create the method computeCustomPreferredBounds. It is very important that the
position of the node be equal to the center of the preferred bounds and that the
bounds be based on the current pushOut value. The value returned by pushOut varies
depending on the magnification of the graph. Also, be sure to set the borderShape
and preferredBounds instance variables. After you have implemented this method

16 of 26

DOME Tool Builder’'s Manual

Extending the Tutorial Example

you should be able to create Eat nodes and notice that the shape’s size seems appro-
priate.

—| System Full Browser [] -

DokETo0l-5TD A - = displaying
DokETool-UDP ShoppingCondition displaying- MDgen
DokAETool-¥HDL ShoppingEat
DokETool-Shopping Shoppingltem v - ____

clipCustom:alongLineT]

Prafi
refel

] |:|isplla1yr CustomShape(

<[
<]

|
£ ETI] [E

3 Minstance b class

comg referred Bounds Y
"Determine the hounds for the restraurant such that the shape will
look like a fast food restaurant with a billooard on top of it. Abide by
the following constraints:

0 There should be a minimum size.

0 The aspect will he kept at 1"

| minimumWidth minimumHeight aspect pb |

minimumWidth := self pushOut * 3.

minimumHeight := self pushOut * 3.

aspect := 1.

"The super method will compute the bounds necessary to hold the name.”

ph o= super computeCustomPreferredBounds.

"&djust for minimum size.”

ph = ph arigin extent: (ph width max: minimumWidth) @ (b height * 3 max: minimumHeight).

"Maintain desired aspect.”

ph width ¢ ph height £ aspect =1
ifTrue: [ph = ph origin extent: ph width @ ({ph width / aspect) rounded)]
ifFalse: [pb := pb origin extent: {{ph height * aspect) rounded) @ ph height].

"Center bounds around position.”

ph moveTa: (self position - (ph extent & 2)).

“set the instance variables."

haorderShape := ph.

preferredBounds = ph.

~ph

FIGURE 11. Instance method ShoppingEat>computeCustomPreferredBounds

DOME Tool Builder’s Manual 17 of 26

Extending the Tutorial Example

3. Create the method displayCustomShapeOn: to actually draw your custom shape as
shown in Figure 11. The most important part of the display routineis that it must be
based on the preferred bounds of the node.

—| System Full Browser |-
DokETool-Projectar (2 FShoppingEat A - Ly ———————————- =
DokETool-ProsSLCSE Shoppingltem displaying clipCustom:alongLine T
DokETool-Requiremen] | ShoppingPath displaying- MDgen compute CustomPrefer
DokETool-Shapelibra Shoppingshop |} ------------ | Hisplay Custom Shape O
DokETo0l-5TD ShoppingUIContraller T E e e e e e
DokETool-UDP ShoppingUIEditar || ——--—--—--—- 2]

DokAETool-¥HDL ShoppingUlGraph —eet—————]

DokETool-Shopping s v —isHatSampetent— A |
g 37 Hinstance > class |<. D, 5

tisplay CustomShape On: aGraphics Context T
"Produce afacade of a restaurant with a biilboard on top with the
restaurants name."

| nb extent start stop toplLeft topRight bottomLeft bottomRight topCenter |

extent := self preferredBounds extent.

"Draw hillboard.”

nh := self nameBounds insetBy: self pushOut negated.

aGraphicsContext displayRectangularBorder: nh.

"Draw billboard support.”

start := nh hottomCenter.

stop := start + (0 @ (extent y /7 8)).

aGraphicsContext displayLineFrom: start to: stop.

"Draw roof"

topLeft := nb battomCenter + {{extent = /- 3) @ (extent v & &)

topRight := nb hottomCenter + ((extent =/ 3) @ (extent y &).

hottomLeft .= self preferredBounds left @ (nb bottom + (extent v * 547 16)).
hottomRight := self preferredBounds right @ (nb bottom + (extent v * 5 /4 16)).
aGraphicsContext displayLineFrom: bottomLeft to: topLetft.

aGraphicsContext displayLineFrom: topLeft to: topRight.

aGraphicsContext displayLineFrom: topRight to: bottomRight.

aGraphicsContext displayLineFrom: bottomRight to: bottomLeft.

"Draw floor and sides.”

topLeft := hottomLeft + ({extent = #6) @ 0).

topRight = hottomRight + {{extent </ -6) @ 0).

hottomLeft := self preferredBounds bottomLeft + ({extent x #6) @ 0).

hottomRight := self preferredBounds bottomRight + ({extent = & -B) @ 0).
aGraphicsContext displayLineFrom: topLeft to: bottomLetft.

aGraphicsContext displayLineFrom: bottomLeft to: bottomRight.

aGraphicsContext displayLineFrom: bottomRight to: topRight.

"Draw doors.”

topLetft := self preferredBounds bottomCenter + ((extent x /- 8) @ ((extent ¥ - nb height) * 7 #-16)).
topRight := self preferredBounds bottomCenter + ((extent x //8) @ ((extent ¥ - nb height) * 7 &-16)).
topCenter ;= self preferredBounds bottomCenter + (0 @ ((extent ¥ -nb height) * 7 &-16)).
hottomLeft .= self preferredBounds bottomCenter + {{extent x /- 8) @ 0.

hottomRight := self preferredBounds bottomCenter + ({extent < //3) @ 0).
aGraphicsContext displayLineFrom: bottomLeft to: topLetft.

aGraphicsContext displayLineFrom: topLeft to: topRight.

aGraphicsContext displayLineFrom: topRight to: bottomRight.

aGraphicsContext displayLineFrom: self preferredBounds bottomCenter to: topCenter.

FIGURE 12. Instance method ShoppingEat>dispayCustomShapeOn:

4. Createthe clipping routine if necessary. For this example, | will create a clipping
routine so that all arcs are attached to the threshold of the doorway. Also, the clip-

18 of 26 DOME Tool Builder’s Manual

Extending the Tutorial Example

ping routine must be based on the preferred bounds of the node. Create the method
clipCustom:alongLineTo: as shownin Figure 11.

—| System Full Browser |-
DokETo0l-5TD A - = displaying L ———————————- =
DokETool-UDP ShoppingCondition | displaying- MDgen l cllpCustom alongIJne'l
DokAETool-¥HDL ShoppingEat " * Prefe
DorEToal=shapping™| | Shoppingltem v ————________ |¢J dlsplaymstomShape(
— piobinstance pclass g EI Bl
v ¥

LlipCustom: anArc alongLineTo: aFoint "-

"Clip to the threshaold of the front door.”

| extent left right |

extent := self preferredBounds extent.

left := self preferredBounds bottomCenter + ({extent x #-8) @ 0).
right := self preferredBounds bottomCenter + {{extent = /#8) @ 0).
~ aPoint nearestintegerPointOnLineSegmentFram: left to: right

FIGURE 13.

Instance method ShoppingEat>clipCustom:alongLineTo:

After the three display routines are implemented you can create a new shopping model
such as that shown in Figure 14.

| shape.shop (100%)

(File) (Edlt V) (Spemal V) (Layout V) (Window V) (Tools V) (Help v)

@E
| %
O §
(-

shape shop

4]][]

FIGURE 14.

2.5

Fully functional Shopping editor with a customized Eat shape

Refining Connection Constraints

If you were to validate the shopping tool that has been implemented so far against the
requirements then you would find that one of the requirements has not been fulfilled.

That incomplete requirement was originally stated as, “...Conditional arcs have no
meaning if a Path arc is exiting from the same node.” Currently, there is no way to spec-
ify this constraint from MetaDOME but now that you have some experience writing
Smalltalk code for a tool it will be a fairly straightforward effort. We will implement

this constraint by making certain that a Constraint and Path arc do not emanate from the
same node.

DOME Tool Builder’s Manual 19 of 26

Extending the Tutorial Example

To enforce this requirement we will need to implement a method on both the Condi-

tional and Path classes that makes certain that there are only like kind of arcs emanating

from the origin node as seen in Figure 11. The method for the Condition classis identi-

cal to this one. All arc constraints should be implemented by specializing NetArc's can-
Connect:to:with: class method. This method is called whenever new arcs are created as
well as when an arc’s origin or destination is moved to another node. There are a couple
of important issues to understand when specializing this method. The first issue is that
the superclass method must be called since it checks the constraints that were generated
from MetaDOME when the tool was installed. The second issue is that if an arc cannot
be connected from nodel to node2 then an explanation should be added to the error
reporter so that the user gets some useful feedback as to why the connection could not
be made.

System Full Browser

w w w w

DokETool-Petritlet A - & - Ly ———————————- =
DokETool-Projectar ShoppingCondition constants- MDgen canConnect:to:with:
DokETool-ProsSLCSE ShoppingEat constraints ||| --------—-—-—--
DokETool-Requirement | Shoppingltem constraints- MDgen

DokETool-Shapelibrar| | ShoppingPath - |} ------------ -

DokETo0l-5TD ShoppingShop "

DokETool-UDP ShoppingUiContraller |} ------------ =

DokAETool-¥HDL ShoppingUIEditor —ohjeet——— |

DokETool-Shopping ShoppingUlGraph | “eatcompanent—

———————————— L ¥ distatfart I

— 37 pinstance bclass |<. D, O
v ¥

canConnect: nodel to: node2 with: anArc OrHil o

"Dio not allow Paths and Conditions to both emanate from the same node.”

(super canConnect: nodel to: nodeZ with: anArcOriil) iFalse: [*false].
nodel outgoingArcs do: [anarc |
anarc class ~= self ifTrue: |
GrapEErrarReporter addExplanation: ShoppingPath what&retou plural | " and 7,
ShoppingCondition what&re'ou plural,
*cannot hoth emanate from the same node.”.
~falze]).
“true

FIGURE 15. Class method ShoppingPath>canConnect:to:with:
Sometimes it is more natural to associate the constraint checking mechanism with the
node being connected from or to rather than with the arc class. This can be done by spe-
cializing the instance level methods on Node named allowConnectionOf:from: and
allowConnectionOf:to:.

2.6 Implementing a Tool using Alter

This enhancement provides an example of how to integrate a tool into DOME using
Alter to implement the tool. Specifically, the tool selects those shopping nodes with
items to be purchased and produces an alphabetically organized shopping list. Refer to
the Alter Programmer’s Reference Manual Writing Tools Appendix for a thorough dis-
cussion about writing tools. There are three steps necessary to implementing and inte-
grating a tool:
1. Create a Registration File.
2. Initialize the *dome-load-path* variable.
3. Implement the tool in Alter.

20 of 26 DOME Tool Builder’s Manual

Extending the Tutorial Example

26.1

2.6.2

2.6.3

Registration File

The registration file contains a collection of function specifications that describe the
available tools. Each function specification specifies the type of object that the tool can

be applied to, the source file of the tool, and the keyboard accelerator to use to invoke

the tool. DOME must also be told where to find the registration file. Thisis done by set-

ting the DoM EUserFunctions environment variable. For this example | ets assume that

the registration file exists in the /tmp directory, therefore, the variable would be set by
‘setenv DoMEUserFunctions /tmp/userFunctions.dome’ from a csh shell. This would
imply that the registration file was named “userFunctions.dome”.

The following lines are the contents of the registration file necessary for this example.

[DoMEUserFunctionList
[DoMEUserFunctionSpec
functionName: ‘Shopping List'!
graphType: #ShoppingUIGraph!
sourceFile: ‘shopping-list.alt’!
keySequence: ‘tsl’!
]
]

Initialize *dome-load-path* Variable

The *dome-load-path* variable provides a means for the registration file to be less site
specific since it allows the source file of a function specification to not be fully speci-
fied. DOME will look through the directories specified by the *dome-load-path* vari-
able for the source file when it comes time to invoke the tool. The *dome-load-path* is
normally initialized by the ‘.domeinit’ file in the user’s home directory. The following
line of Alter code is sufficient to specify the load path.

(define *dome-load-path* (list “/tmp” “/usr/local/dome/lib”))

Implementation

The implementation for the shopping list tool is fairly simple once you have a firm
understanding of Alter. Keeping a copy of the Alter Programmer’s Reference Manual
close at hand when you are writing a tool will greatly facilitate its implementation. In
order for this example to work correctly, the file containing the implementation should
be located in the /tmp directory and be named shopping-list.alt. The following lines are
the Alter code necessary for implementing a simple tool:

;; Name: shopping-list

;; Purpose:

;; Produce a shopping list of the items to be bought at the various
;; stores.

;; Remember the file into which the shopping list is to be written so that
;; the next time this tool is invoked it will use the same file.
(define shopping-output-file

(if (bound? shopping-output-file) shopping-output-file nil))

;; Request a file and output the shopping list to the specified file.
(define (shopping-list-main graph)

DOME Tool Builder’s Manual 21 of 26

Extending the Tutorial Example

(let ((file (if (nil? shopping-output-file)
(request-new-file-name)
(request-new-file-name shopping-output-file))))

(if (not (nil?file))
(begin
(set! shopping-output-file file)
(with-output-to-file
(filename->string file)
(lambda () (shopping-list-report graph)))))))

;; Loop through the stores writing out the items to be purchased.
(define (shopping-list-report graph)
(let ((stores (select
(nodes graph)
(lambda (shop)
(and
(is-kind-of? shop ShoppingShop)
(not (= 0 (length (get-property “items” shop)))))))))
(if (= O (length stores))
(warn “There are no stores with items to be purchased!”)
(begin
(display “Shopping List”)
(newline)
(display “ "
(newline)
(show-progress-for-each
“Processing shops”
shopping-list-output-shop
(sort stores (lambda (x y) (string<? (name x) (name y)))))))))

;; Write out the store name and the list of items to be purchased.
(define (shopping-list-output-shop shop)
(let ((shopname (name shop)))
(newline)
(display “)
(display shopname)
(newline)
(display “)
(do ((count (length shopname) (- count 1)))
((= 0 count))
(display *-"))
(newline)
(for-each
(lambda (item)
(display “)
(display (name item))
(newline))
(sort
(get-property “items” shop)
(lambda (x y) (string<? (name x) (name Yy)))))))

22 of 26

DOME Tool Builder’'s Manual

Extending the Tutorial Example

2.7

;; Point DOME towards the entry point for this user-defined tool.
shopping-list-main

To execute the tool, create a ShoppingUl model, create some shops with some itemsto
be purchased, and select Tools->User Defined->Shopping List. The following list is
representative output from the tool:

Shopping List

pants
shirt

Adding a User Defined Property

Adding a property via a User Defined Property model isn't really an enhancement like
the other enhancements that have been described so far but it is worthwhile to know
how one can go about adding properties to a model without modifying the MetaDOME
specification of the model. There are two steps necessary to add and use a user defined
property. You must first create a User Defined Property model with the necessary prop-
erties defined and then you must associate the User Defined Property model with the
model that will actually make use of the user defined properties. Lets first create the
User Defined Property model.

1. Create a User Defined Property model via the create button of the DOME launcher.

2. Merge the tool specification of the Shopping model into the newly created User
Defined Property model by selecting “File->merge from”. This doesn’t actually
merge the nodes of the tool specification with the User Defined Property model but
merely links the tool specification to the model via its filename. A view of the tool
specification is automatically created as part of the User Defined Property model
when the merge is done as well as when the User Defined Property model is opened
for editing.

3. Add the new property to the Item List Element node. Simply select the property tool
and drop a property on the Item List Element node as shown in Figure 16. The user
defined properties are shown with <> brackets around them to make them more eas-
ily recognized. The new property should have the following characteristics, as
shown in Figure 17:

* Name => “actualCost”

* Label =>"Actual cost:”

* Show after => expectedPrice
* Type => Number

Can Be TBD => false

DOME Tool Builder’s Manual 23 of 26

Extending the Tutorial Example

e |nitialize => true

_.| UserDefined Property.udp (100%)

[File ¥) [Edit ¥) [Special ¥ | Layout ¥) (Window ¥) (Tools ¥) [Help ¥)
X it S)ee) 1)

% " Used efinedProperty.udp

Em| Categony: DoMETool-Shopping Condition

R Element Prefix: Shopping

§> . Ul Prefix: ShoppingUl

Tool Palerte

iterns

4] [v][]

I Condition[1:n]
Tanit e
< acmalCosts
expectedPrice
=
IEINLDY I
Wrote

FIGURE 16.

User Defined Property model with the actualCost property

—| User Property Froperties |-

Hame: actualCost

Category 7]

O
Revert] [|_Apply |

Label: E _Actualcost:

S —
Show after: £1
B
Type: I
Layout: @

Collection type

[single value

COrdered

Sorted
Set

B W &ccess locally

B [Dependent

B [] Has “isual Effects
B 1 Read Only

B [can Be TED

£ W Initialize

Initial

Value: go

FIGURE 17.

Inspector focused on the actualCost property

Save the model after you are done specifying the property. Now that the model has been
saved it can be made use of by a Shopping model. To associate a user defined property
model with the shopping model, you must inspect the context node of the shopping
model and add the User Defined Property file as a schemafile of the shopping model.
Select the Property Schema category from the inspector and add the file to the schema
files property. To prove that the property is now available create a Shop node with an

24 of 26

DOME Tool Builder’'s Manual

Extending the Tutorial Example

iteminit and inspect it. Theitem will now have two properties, expectedPrice and actu-
aCost.

DOME Tool Builder’s Manual 25 of 26

Extending the Tutorial Example

26 of 26 DOME Tool Builder’s Manual

Index

A
AligningNamedNode4

C
controller3
Cursors6

|
icons6

M
model3

P
printing9
single page9

S
saving a graph9
scaffolding4

27 of 28

Index

28 of 28

	1.0 Tutorial
	1.1 Creating a DOME Tool Specification Model
	1.2 Specifying the Smalltalk Class Information
	1.2.1 Excursion: Installing a Minimal Tool Specifi...

	1.3 Defining the Graph Element Classes
	1.4 Defining the Editor Tools (Icons, Cursors, and...
	1.4.1 Creating an Icon
	1.4.2 Creating a Cursor
	1.4.3 Excursion: Installing a partially specified ...

	1.5 Defining the Arc Constraints
	1.5.1 Excursion: Installing the fully specified to...

	1.6 Using the Shopping Editor

	2.0 Extending the Tutorial Example
	2.1 Adding a List Element
	2.1.1 Excursion: Installing the new capabilities

	2.2 Multiple columns of Tools
	2.3 Adding a Property
	2.3.1 Excursion: Installing the new capabilities

	2.4 Changing the Shape of a Node
	2.5 Refining Connection Constraints
	2.6 Implementing a Tool using Alter
	2.6.1 Registration File
	2.6.2 Initialize *dome-load-path* Variable
	2.6.3 Implementation

	2.7 Adding a User Defined Property

