
USE: A UML-Based Specification

Environment for Validating UML and OCL

Martin Gogolla a Fabian Büttner a Mark Richters b

aUniversity of Bremen, Bremen, Germany

bEADS Space Transportation, Bremen, Germany

Abstract

The Unified Modeling Language (UML) is accepted today as an important stan-
dard for developing software. UML tools however provide little support for validat-
ing and checking models in early development phases. There is also no substantial
support for the Object Constraint Language (OCL). We present an approach for
the validation of UML models and OCL constraints based on animation and certi-
fication. The USE tool (UML-based Specification Environment) supports analysts,
designers and developers in executing UML models and checking OCL constraints
and thus enables them to employ model-driven techniques for software production.

Key words:

UML, OCL, Model, Constraint, Invariant, Pre- and postcondition, Model
Validation, Model Certification, Model Execution.

1 Introduction

UML (Rumbaugh et al., 2003) is accepted today as a de-facto standard for
developing software. UML and its sub-language OCL (Warmer and Kleppe,
2003) are regarded as central ingredients of model-centric software production.

To assure model quality, model verification and model validation have been
put forward. Here, we concentrate on model validation, i.e., on checking that
a model meets informal requirements a developer has in mind. Checking also
involves that the model satisfies particular properties, for example, that certain
consequences can be proved or at least certified by a model inspection process.

In order to assist developers in model-driven techniques, we put forward the
tool USE (UML-based Specification Environment). USE basically is an inter-
preter for a subset of UML and OCL. An OCL constraint is either an invariant

Preprint submitted to Elsevier Science 31 October 2005



or a pre- or postcondition. USE started as a dissertation project (Richters,
2002) with its first version being available already in 1998. Work around USE
combined efforts to define the formal semantics of OCL hand in hand with
a Java implementation (Richters and Gogolla, 2001) based on an OCL meta-
model. Early USE versions were developed further by diploma theses and
other student projects. The original USE tool was extended by a snapshot
generator (Gogolla et al., 2005) and the support of class diagrams. Over the
time, small bugs were eliminated and extensions, for example in the user inter-
face, were added on the basis of feedback from USE users. Future versions of
USE will provide better support for (1) sequence diagrams, the (2) evaluation
browser (used as an OCL expression debugger), (3) XMI import and export,
and (4) model refactoring. The latter may be regarded as a special Model
Driven Architecture (MDA) extension of USE (Büttner et al., 2005).

USE has many installations outside of Bremen. USE has been utilized in a
number of case studies and teaching and development projects, among other
places at the MIT, Cambridge, MA, at the University of Edinburgh, Scotland,
at the University of Colorado, CO, and the University of Lisbon, Portugal.

The structure of the rest of this paper is as follows. Section 2 discusses the con-
cepts behind USE. Section 3 concentrates on related approaches and Sect. 4
very shortly mentions relevant theory. The paper ends with concluding re-
marks in Sect. 5.

2 Concepts of the UML-Based Specification Environment (USE)

Model validation through exploring properties of models is a significant task
within model-based software development. The USE system supports devel-
opers in analyzing the model structure (classes, associations, attributes, and
invariants) and the model behavior (operations and pre- and postconditions)
by generating typical snapshots (system states) and by executing typical op-
eration sequences (scenarios). Developers can formally check constraints (in-
variants and pre- and postconditions) against their expectations and can, to
a certain extent, derive formal model properties.

The USE approach is explained here by a small example model describing per-
sons and the advance of their civil status. The two USE screenshots in Figs. 1
and 2 show on the left side the examined model: The model browser overview
window in the top left displays all model elements (classes, associations, in-
variants, and pre- and postconditions), and the window below the browser
shows details about the selected model element (highlighted with grey color).
Both figures introduce further functionalities in the right part of the window
which are explained below.

2



Fig. 1. Class Diagram, Sequence Diagram, Class Extent, and OCL Evaluation

3



Fig. 2. Object Diagram, Class Invariants, Evaluation Browser, and Log

2.1 Basic Concepts

The first screenshot in Fig. 1 introduces the class diagram, the sequence dia-
gram, the class extent, and the evaluation of OCL expressions.

Class diagram: A UML model is given to USE in textual form. The central
parts of the example model are shown in the class diagram: One class with
attributes and operations, one association with role names and multiplicities,
and two enumerations. Structural restrictions (invariants) which determine the

4



allowed object diagrams and behavioral restrictions (pre- and postconditions)
which narrow the allowed operation calls are present in the model browser,
but are not shown in the class diagram.

Sequence diagram: Execution of operations is indicated in the sequence
diagram. The operation sequence including operation parameters is given to
USE in a command shell. In the current operation sequence shown in the
screenshot, all pre- and postconditions are satisfied. Failing pre- or postcon-
ditions would have been highlighted and could be analyzed in more detail on
the command shell. As an example for a complete operation description with
pre- and postconditions we show the operation marry.

marry(aSpouse:Person)

pre aSpouseDefined: aSpouse.isDefined

pre isAlive: alive

pre aSpouseAlive: aSpouse.alive

pre isUnmarried: civstat<>#married

pre aSpouseUnmarried: aSpouse.civstat<>#married

pre differentGenders: gender<>aSpouse.gender

post isMarried: civstat=#married

post femaleHasMarriedHusband: gender=#female implies

husband=aSpouse and husband.civstat=#married

post maleHasMarriedWife: gender=#male implies

wife=aSpouse and wife.civstat=#married

We use many small pre- and postconditions with explicit names. Such small
conditions give fine grained information explaining invariant or pre- or post-
condition failure. Meaningful names help to understand constraint failure. But
operations are not only characterized descriptively by pre- and postconditions.
In USE, operations can be detailed also imperatively by so-called procedures
in a language close to the Action Semantics language of UML with a Pascal-
like syntax. As an example, we show the realization of operation marry. Ex-
pressions in brackets (like [self.gender=#female]) indicate parts containing
possibly complex OCL expressions.

procedure Person_marry(self:Person,aSpouse:Person)

begin

[self].civstat:=[#married]; [aSpouse].civstat:=[#married];

if [self.gender=#female] then

begin Insert(Marriage,[self],[aSpouse]); end

else -- [self.gender=#male]

begin Insert(Marriage,[aSpouse],[self]); end;

end;

The procedure shows how new links relating two persons are inserted into the
Marriage association. The role names in Marriage possess the order (wife, hus-
band) which has to be respected when manipulating links.

5



Class extent: The extent of class Person after the last operation has been
executed indicates the current object identities (ada, bob, etc.) and the values
the attributes (name, civstat, etc.) currently take. In this situation, the class
extent uniquely determines a UML object diagram (with no links) character-
izing the current system state. The class extent may optionally be shown with
invariants evaluated separately for each object.

OCL expression evaluation: USE makes it possible to query the cur-
rent system state by evaluating OCL expressions in an ad-hoc manner.
The example query retrieves the name and civil status of alive persons. In
SQL, this query would be stated as select name, civstat from Person

where alive=true. Thus, SQL-like query formulation and evaluation is pos-
sible in USE. The class extent window and the evaluate OCL expression win-
dow are two ways to inspect the current system state. The developer has the
freedom to choose the most appropriate one.

2.2 Advanced Concepts

The second screenshot in Fig. 2 presents the object diagram, the class invariant
evaluation, the evaluation browser, and the log protocol.

Object diagram: A complete system state can be captured in an object
diagram presenting objects with attribute values and object links. The object
diagram in the example is generated by executing the procedure crowd shown
below with appropriate parameters: crowd(3,4,2) (3 female persons, 4 male,
2 marriages). The procedure generates the object diagram with randomly
chosen attribute values and links established also in a random way.

procedure crowd(numFem:Integer, numMale:Integer, numMarr:Integer)

var theFemales: Sequence(Person), theMales: Sequence(Person),

f: Person, m: Person;

begin

theFemales:=CreateN(Person,[numFem]);

theMales:=CreateN(Person,[numMale]);

for i:Integer in [Sequence{1..numFem}] begin

[theFemales->at(i)].name:=Any([Sequence{’Ada’,’Bel’,’Cam’,

’Day’,’Eva’,’Flo’,’Gen’,’Hao’,’Ina’,’Jen’}]);

[theFemales->at(i)].civstat:=

Any([Sequence{#single,#married,#divorced,#widowed}]);

[theFemales->at(i)].gender:=Any([Sequence{#female,#male}]);

[theFemales->at(i)].alive:=Any([Sequence{false,true}]);

end;

for i:Integer in [Sequence{1..numMale}] begin

[theMales->at(i)].name:=Any([Sequence{’Ali’,’Bob’,’Cyd’,

’Dan’,’Eli’,’Fox’,’Gil’,’Hal’,’Ike’,’Jan’}]);

6



[theMales->at(i)].civstat:=

Any([Sequence{#single,#married,#divorced,#widowed}]);

[theMales->at(i)].gender:=Any([Sequence{#female,#male}]);

[theMales->at(i)].alive:=Any([Sequence{false,true}]);

end;

for i:Integer in [Sequence{1..numMarr}] begin

f:=Any([theFemales]); m:=Any([theMales]);

Insert(Marriage,[f],[m]);

end;

end;

The resulting object diagram does not conform to the multiplicities stated in
the class diagram nor to the explicitly given invariants. This can formally be
explored and explained by the following USE functionalities.

Class invariants: The window with the class invariants shows their evalua-
tion in the current system state. An invariant can be evaluated to true, false,
or can be not applicable (n/a). One has not to worry about a true invariant.
A false invariant indicates an invalid system state which can be inspected by
double-clicking the invariant name (here femaleHasNoWife), and this opens
the Evaluation browser explained further down. If an invariant is not applica-
ble, the Log window detailed below will tell us about the underlying reason.

Evaluation browser: The evaluation browser allows to take a detailed view
on a chosen invariant. The browser focuses on the invariant evaluation in order
to display variable assignments. This allows to understand invariant failure and
to detect the violating parts of the object diagram. In the example, we see the
explicit form of the invariant femaleHasNoWife in the first line. We further
inspect the case where the implication premise is true and the implication
consequence is false. This points to Person4 being a female but having Person2
as a wife which is forbidden by the invariant femaleHasNoWife. Thus the
evaluation browser may be understood as a means to detect the invariant
violators in the system state, that is, the objects leading to invariant failure.

Log protocol: The Log protocol reports on the validity of the multiplicity
constraints from the class diagram. If a multiplicity constraint is violated,
the violating object together with the actual violating multiplicity and the
allowed class diagram multiplicity is stated. In the example, we learn that
Person2 offends the multiplicity constraint 0..1 on the husband side of the
Marriage association, because Person2 is connected to two husbands. The
invariant maleHasNoHusband is classified as not applicable in the Class in-
variant window, because the term self.husband being part of the constraint
is expected to return a single (or no) person, but in this state it returns a
proper, two-element set of persons.

An object diagram like the one from above helps the developer in understand-

7



ing the model in at least two ways: (1) It may show formally valid objects
and links. This confirms the developer’s choice of constraints or this leads to
a tightening of the constraints. (2) It may show invalid objects and links, and
with this the developer is again either confirmed in the constraint choice or
this leads to a weakening of the constraints. In both cases, the obtained object
diagrams may be regarded as positive or negative test cases which may even
be transformed to further software development phases.

As indicated by the top icons in the screenshots, USE provides other options
apart from those we have shown but which we do not discuss here.

2.3 Certification

Above we have explained how USE can be employed for validating models
through inspection. We now turn to handle formal properties by USE.

Consistency: USE can check the consistency of models. If a valid object
diagram can be constructed, then the invariants are not contradictory.

Independence: Independence of a single invariant, that is the single invariant
does not follow from another invariant or combination of other invariants, may
be shown by constructing a system state which satisfies all other invariants
but does not satisfy the single invariant whose independence has to be proved.

Implication: Implications of the actual invariants may be derived by showing
that it is not possible to construct an object diagram for the invariants, if the
negation of the implication to be proved is added to the current invariants.

Let us consider the following example which proves that our model implies the
absence of bigamy. This is certified by the following command line protocol.

use> gen load bigamy.invs

Added invariants: Person::bigamy

use> gen start civstat.assl attemptBigamy()

use> gen result

Random number generator was initialized with 5649.

Checked 663552 snapshots. Result: No valid state found.

In this command line protocol, first the following new invariant bigamy is
added to the already present invariants.

context Person inv bigamy: wife.isDefined and husband.isDefined

Afterwards the procedure attemptBigamy() is called and USE reports that is
has inspected 663552 snapshots (system states) but no valid state has been

8



found. Why does USE inspect exactly this number of snapshots? In order to
understand this, we first have to take a look at the procedure attemptBigamy.

procedure attemptBigamy()

var p: Person, w: Person, h:Person, thePersons: Sequence(Person);

begin

thePersons:=CreateN(Person,[3]);

for i:Integer in [Sequence{1..3}] begin

[thePersons->at(i)].name:=Try([Sequence{’A’,’B’,’C’}]);

[thePersons->at(i)].civstat:=

Try([Sequence{#single,#married,#divorced,#widowed}]);

[thePersons->at(i)].gender:=Try([Sequence{#female,#male}]);

[thePersons->at(i)].alive:=Try([Sequence{false,true}]);

end;

p:=Try([thePersons]); w:=Try([thePersons->excluding(p)]);

h:=Try([thePersons->excluding(p)->excluding(w)]);

Insert(Marriage,[w],[p]); Insert(Marriage,[p],[h]);

end;

The procedure tries to construct a bigamy snapshot (recall that we have loaded
the invariant bigamy) by creating three persons and two Marriage links and
where a single person plays both the role of a wife and the role of a husband.
The procedure tries all possibilities for all attributes and all roles but does not
succeed. But, again, why does USE come across 663552 snapshots?

A single person can take 3 name values (‘A’, ‘B’, ‘C’), 4 civil status values (sin-
gle, married, divorced, widowed), 2 gender values (female, male), and 2 alive
values (false, true). These together give 3*4*2*2=48 possibilities for a single
person. We consider 3 persons and therefore get 48*48*48=110592 choices.
For the marriage links (assignments to p,w,h), we obtain 3*2*1=6 configura-
tions, and this makes 6*110592=663552 possibilities. This shows: Our model
guarantees the absence of bigamy. We are aware of the fact that this is not a
complete formal proof, and that the result only holds as long as all assump-
tions which we have made in connection with the procedure attemptBigamy()
are true. But in this case, the procedure makes no inadmissible assumptions,
and this certifies the desired property.

3 Comparison with Related Tools and Systems

A comparison of tools for OCL can be found in (Toval et al., 2003). Relevant
related work includes the Dresden OCL compiler (Hussmann et al., 2000)
compiling OCL into Java code, the OCLE system having a similar scope as
USE but no automatic snapshot facility (Chiorean, 2001), the Kent Model-
ing Framework KMF (Akehurst and Patrascoiu, 2005) allowing to use OCL

9



for own Java projects, the Octopus (Klasse Objecten, 2005) OCL 2.0 syntax
checker, BoldSoft’s tool ModelRun (Boldsoft, 2002), the KeY system (Ahrendt
et al., 2000) based on TogetherJ and allowing interactive verification of OCL
properties, a recent approach compiling OCL to C# (Arnold, 2005), and work
translating (a simplified version of) OCL into the theorem prover PVS (Kyas
et al., 2005). Few commercial UML tools (e.g., Poseidon, MagicDraw, Max-
UML, Together, XMF-Mosaic) provide basic OCL support.

The first version of USE was released in 1998. Since then, it has become a useful
and mature tool. The theoretical work in connection with USE proposing an
OCL metamodel and defining the formal semantics of OCL found its way into
the OCL 2.0 OMG standard. USE is the only system allowing snapshots to
be generated automatically. The combination of validation and certification
techniques also seems to be quite unique.

4 Relevant Theory

The syntax of UML and OCL is defined with a metamodel using UML (MOF).
The semantics of OCL and the needed class diagram features of UML is ex-
pressed in terms of plain set theory in (Richters, 2002) which has been im-
plemented in the USE system hand in hand with the formal semantics. This
set-theoretic semantics of OCL is part of the OMG standard and additionally
expressed in that standard in terms of a metamodel.

5 Conclusion

We have described the tool USE which allows UML models with OCL con-
straints (invariants and pre- and postconditions) to be validated against de-
veloper’s assumptions. USE allows to a certain extent the checking of formal
properties. USE permits to review the consistency of UML models and the
independence of constraints. USE makes it possible to certify properties. It
can be shown that under particular assumptions certain constraints are log-
ical consequences of a given UML model. Thus, USE supports developers in
analyzing the model structure and behavior and in exploring properties of
models. USE (as all other OCL systems we are aware of) does not allow full
automatic formal verification of arbitrary properties formulated in OCL.

Further development will extend USE to make model refactorization possible.
This is a first step towards a tool supporting model-driven engineering. Apart
from these conceptional extensions, work has to take into account continuous
integration of smaller changes, improvements and the elimination of bugs.

10



References

Ahrendt, W., Baar, T., Beckert, B., Giese, M., Habermalz, E., Hähnle, R.,
Menzel, W., Schmitt, P. H., 2000. The KeY approach: Integrating object
oriented design and formal verification. In: Ojeda-Aciego, M., de Guzmán,
I., Brewka, G., Pereira, L. M. (Eds.), Proc. 8th European Workshop Logics
in AI (JELIA’2000). LNCS 1919. Springer, pp. 21–36.

Akehurst, D., Patrascoiu, O., 2005. The Kent Modeling Framework (KMF).
http://www.cs.kent.ac.uk/projects/ocl, University of Kent.

Arnold, D., 2005. OCL/C# Compiler. www.ewebsimplex.net/csocl/, eweb-
simplex.

Boldsoft, 2002. Boldsoft OCL Tool Model Run. www.boldsoft.com, Boldsoft,
Stockholm.

Büttner, F., Bauerdick, H., Gogolla, M., 2005. Towards Transformation of
Integrity Constraints and Database States. In: Martin, D. C. (Ed.), Proc.
Dexa’2005 Workshop Logical Aspects and Applications of Integrity Con-
straints (LAAIC’2005). IEEE, Los Alamitos, pp. 823–828.

Chiorean, D., 2001. Using OCL Beyond Specifications. In: Evans, A., France,
R., Moreira, A., Rumpe, B. (Eds.), Proc. UML’2001 Workshop Rigorous
Development. LNI, GI, Bonn, pp. 57–68.

Gogolla, M., Bohling, J., Richters, M., 2005. Validating UML and OCL Mod-
els in USE by Automatic Snapshot Generation. Journal on Software and
System Modeling.

Hussmann, H., Demuth, B., Finger, F., 2000. Modular architecture for a
toolset supporting OCL. In: Evans, A., Kent, S., Selic, B. (Eds.), Proc. 3rd
Int. Conf. Unified Modeling Language (UML’2000). Springer, LNCS 1939,
pp. 278–293.

Kyas, M., Fecher, H., de Boer, F. S., Jacob, J., Hooman, J., van der Zwaag, M.,
Arons, T., Kugler, H., 2005. Formalizing UML models and OCL constraints
in PVS. Electr. Notes Theor. Comput. Sci. 115, 39–47.

Klasse Objecten, 2005. The Klasse Objecten OCL Checker Octopus.
www.klasse.nl/english/research/octopus-intro.html, Klasse Ob-
jecten.

Richters, M., 2002. A Precise Approach to Validating UML Models and OCL
Constraints. Ph.D. thesis, Universität Bremen, Fachbereich Mathematik
und Informatik, Logos Verlag, Berlin, BISS Monographs, No. 14.

Richters, M., Gogolla, M., 2001. OCL - Syntax, Semantics and Tools. In:
Clark, T., Warmer, J. (Eds.), Advances in Object Modelling with the OCL.
Springer, Berlin, LNCS 2263, pp. 43–69.

Rumbaugh, J., Booch, G., Jacobson, I., 2003. The Unified Modeling Language
2.0 Reference Manual. Addison-Wesley, Reading.

Toval, A., Requena, V., Fernandez, J., 2003. Emerging OCL Tools. Software
and Systems Modeling 2 (4), 248–261.

Warmer, J., Kleppe, A., 2003. The Object Constraint Language: Precise Mod-
eling with UML. Addison-Wesley, 2nd Edition.

11


